
Scalable Reasoning
for Description Logics

Scalable Reasoning for Description
Logics

Rob Shearer

Linacre College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2009

Rob Shearer

Linacre College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2010



Abstract

Description logics (DLs) are knowledge representation formalisms with well-understood

model-theoretic semantics and computational properties. The DL SROIQ provides

the logical underpinning for the semantic web language OWL 2, which is quickly

becoming the standard for knowledge representation on the web.

A central component of most DL applications is an efficient and scalable reasoner,

which provides services such as consistency testing and classification. Despite major

advances in DL reasoning algorithms over the last decade, however, ontologies are

still encountered in practice that cannot be handled by existing DL reasoners.

We present a novel reasoning calculus for the description logic SROIQ which ad-

dresses two of the major sources of inefficiency present in the tableau-based reasoning

calculi used in state-of-the-art reasoners: unnecessary nondeterminism and unneces-

sarily large model sizes. Further, we describe a new approach to classification which

exploits partial information about the subsumption relation between concept names

to reduce both the number of individual subsumption tests performed and the cost

of working with large ontologies; our algorithm is applicable to the general problem

of deducing a quasi-ordering from a sequence of binary comparisons. We also present

techniques for extracting partial information about the subsumption relation from the

models generated by constructive DL reasoning methods, such as our hypertableau

calculus.

Empirical results from a prototypical implementation demonstrate substantial per-

formance improvements compared to existing algorithms and implementations.



Contents

I Foundations 1

1 Introduction 2

2 Description Logics 9

2.1 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II Model Generation 15

3 Difficulties 16

3.1 Traditional Tableau Algorithms . . . . . . . . . . . . . . . . . . . . . 16

3.2 Or-Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 And-Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Problems Due to Merging . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Nominals, Inverses, and Number Restrictions . . . . . . . . . . . . . . 24

3.5.1 Promoting Blockable Individuals . . . . . . . . . . . . . . . . 25

3.5.2 The Traditional Tableau Solution . . . . . . . . . . . . . . . . 27

3.5.3 The NI -rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.4 Annotated Equalities . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.5 Nominals and Merging . . . . . . . . . . . . . . . . . . . . . . 31

3.5.6 The NI -Rule and Unraveling . . . . . . . . . . . . . . . . . . . 33

i



4 Algorithm Overview 35

4.1 Derivation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Calculus Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Anywhere Pairwise Blocking . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Nominal Guard Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 The Hypertableau Calculus for SROIQ 40

5.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.1 Elimination of Role Inclusion Axioms . . . . . . . . . . . . . . 44

5.1.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.3 Translation into DL-Clauses . . . . . . . . . . . . . . . . . . . 55

5.2 The Hypertableau Calculus for HT-Clauses . . . . . . . . . . . . . . . 59

6 Optimizations 86

6.1 Caching Blocking Labels . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Single Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Subset Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 The Number of Blockable Individuals . . . . . . . . . . . . . . . . . . 94

6.5 The Number of Root Individuals . . . . . . . . . . . . . . . . . . . . 97

7 Related Work 100

7.1 Hypertableau vs. Absorption . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Relationship with Caching . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3 Relationship with First-Order Calculi . . . . . . . . . . . . . . . . . . 105

III Classification and Retrieval 108

8 Overview 109

8.1 Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

ii



8.2 Algorithm Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9 Deducing a Quasi-Ordering 114

9.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.2 Maximizing Partial Information . . . . . . . . . . . . . . . . . . . . . 115

9.3 Taxonomy Construction and Searching . . . . . . . . . . . . . . . . . 117

9.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

10 Extracting Subsumption Information From Models 123

10.1 Identifying Non-Subsumptions . . . . . . . . . . . . . . . . . . . . . . 123

10.2 Identifying Subsumptions . . . . . . . . . . . . . . . . . . . . . . . . . 125

11 Related Work 129

IV Evaluation 131

12 Empirical Results 132

12.1 Reasoning Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 132

12.1.1 Implementing Anywhere Blocking . . . . . . . . . . . . . . . . 134

12.1.2 Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 135

12.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

12.2 Classification Performance . . . . . . . . . . . . . . . . . . . . . . . . 141

12.2.1 Comparison with the Enhanced Traversal Method . . . . . . . 141

12.2.2 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . 143

13 Conclusion 147

13.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

13.2 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

13.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

iii



A Reasoning Performance Data 151

References 169

iv



Part I

Foundations

1



Chapter 1

Introduction

Description Logics (DLs) [Baader et al., 2007] are a family of knowledge represen-

tation formalisms with well-understood formal properties. DLs have been applied to

numerous problems in computer science such as information integration and metadata

management, and have received extensive use in fields as diverse as biology [Sidhu et

al., 2005], medicine [Golbreich et al., 2006], geography [Goodwin, 2005], astronomy

[Derriere et al., 2006], geology,1 agriculture [Soergel et al., 2004], and defense [Lacy

et al., 2005]. Furthermore, DLs have been used to develop several large biomedical

ontologies, such as the Biological Pathways Exchange (BioPAX) ontology [Rutten-

berg et al., 2005], the GALEN ontology [Rector and Rogers, 2006], the Foundational

Model of Anatomy (FMA) [Golbreich et al., 2006], and the National Cancer Insti-

tute thesaurus [Hartel et al., 2005]. Recent interest in DLs has been spurred by their

application in the Semantic Web: the DL SHOIQ provides the logical underpinning

for the Web Ontology Language (OWL) [Patel-Schneider et al., 2004], and the DL

SROIQ [Kutz et al., 2006] is used in its successor OWL 2.

A central component of most DL applications is an efficient and scalable rea-

soner which allows interrogation of information implied by a knowledge base but

not encoded explicitly. Such reasoners provide services such as consistency checking

(searching for contradictions between information in the knowledge base), member-

1http://sweet.jpl.nasa.gov/ontology/

2

http://sweet.jpl.nasa.gov/ontology/


ship testing (determining whether a given instance is a member of a given concept

expression), realization (discovering all concept names from the input knowledge base

of which a given instance is a member), conjunctive query answering (identifying all

tuples of instances from the input knowledge base which together match/instantiate

a query pattern), entailment checking (determining whether one knowledge base is a

logical consequence of another), and explanation (providing accessible information to

users about the reasons for results provided by other services).

One of the core services provided by most reasoners is classification, the discovery

of all subsumption relationships between concept names in the input knowledge base.

In fact, classification is typically the primary (and often the only) reasoning service

exposed by ontology engineering tools [Lutz et al., 2006]. The Protégé-OWL editor

[Knublauch et al., 2004], for example, includes a “Reasoning” button which performs

classification. The resulting hierarchy of subsumption relationships is used to organize

concept names within all aspects of Protégé’s interface, and the subsumption relation-

ships which arise as implicit consequences of an ontology are the primary mechanism

authors use to check that the axioms they write are consistent with their intuitions

about the structure of the domain. Finally, other reasoning services, such as expla-

nation and query answering, typically exploit a cached version of the classification

results; classification is thus usually the first task performed by a reasoner.

In some cases (e.g. for less expressive ontology languages such as EL [Baader,

2003]) it is possible to implement high-level reasoning services such as classification

directly. In most cases, however, high-level services are implemented by testing the

consistency of a number of knowledge bases generated by extending the input KB

with additional information. For example, to determine whether an instance a is a

member of a concept C with respect to knowledge base K (which is known to be

consistent), K is extended with the assertion that a is not a member of C; if the

resulting knowledge base is inconsistent then it is a logical consequence of K that a

3



is a member of C. Consistency testing thus forms the core of most DL reasoners.

The theoretical complexity of the consistency-testing problem varies with the on-

tology language used: knowledge bases that make use of only conjunction and exis-

tential restriction (and thus can be encoded in the EL language) can be tested for

consistency in polynomial time [Baader, 2003], while the use of negation and universal

restrictions (as allowed by the ALC language, which subsumes EL) pushes complexity

to ExpTime [Schmidt-Schauß and Smolka, 1991]. In this thesis we primarily address

reasoning over knowledge bases encoded in the SROIQ language, which in turn sub-

sumesALC; consistency testing for SROIQ is N2ExpTime [Kazakov, 2008]. Despite

these high worst-case complexities, reasoning procedures have been developed which

allow real-world performance on human-generated knowledge bases sufficient for a

wide range of applications.

Tableau Reasoning

Modern reasoners typically show consistency of a knowledge base by building (an

abstraction of) a model consistent with that knowledge base. There is an extremely

large space of potential models, and most modern reasoners, such as Pellet [Parsia

and Sirin, 2004], FaCT++ [Tsarkov and Horrocks, 2006], and RACER [Haarslev and

Möller, 2001c], perform an exhaustive search of a representative subset of this space

using algorithms based on tableau calculi [Baader and Nutt, 2007]. Such a calculus

constructs partial models incrementally by repeatedly applying a set of expansion

rules, each of which elaborates the model with further constraints implied by the

axioms of the knowledge base. Numerous optimizations have been developed in an

effort to reduce the size of the search space [Horrocks, 2007]. Despite major advances in

tableau reasoning algorithms, however, ontologies are still encountered in practice that

cannot be handled by existing DL reasoners. Such limitations have been attributed

to two primary sources of inefficiency in tableau calculi [Donini, 2007].

4



This first well-known source of inefficiency is called or-branching : given a disjunc-

tive assertion in the knowledge base, a tableau algorithm nondeterministically guesses

which of the disjuncts holds. To show the unsatisfiability of a knowledge base, every

possible guess must lead to a contradiction: if the initial guess leads to a contradic-

tion, the algorithm must backtrack and explore another disjunct, which can give rise

to exponential behavior. In DL knowledge bases, terminological axioms are the main

source of disjunctions: to ensure that such an axiom holds, a tableau algorithm adds

a disjunction to every individual introduced in the model.

While it is possible to encode genuinely complex constraint-satisfaction problems

in description logic knowledge bases, few real-world ontologies require such general-

purpose treatment of disjunction: only a tiny minority of nondeterministic guesses

interact in practice, and in many cases the processing of certain types of disjunction

can be deferred until a potential interaction is detected. Various absorption opti-

mizations [Horrocks, 1998; Tsarkov and Horrocks, 2004; Hudek and Weddell, 2006;

Horrocks, 2007] have been developed to reduce the nondeterminism in tableau calculi.

We discuss this problem in more detail in Section 3.2.

The second well-known source of inefficiency in tableau calculi is called and-

branching : the expansion of a model due to existential quantifiers can generate very

large models. Such large models can quickly exceed the primary storage available to

implementations, and they also greatly magnify problems resulting from or-branching:

the cost of revising nondeterministic guesses grows with the size of the model, as does

the number of individuals to which GCIs are applied; the problem of large models is

further described in Section 3.2. Our results (presented in Chapter 12) demonstrate

that much of the extra work introduced by and-branching is redundant: the large

models typically produced by tableau reasoners contain multiple copies of identical

sub-models.

We further identify a third (more esoteric) source of inefficiency in tableau calculi,

5



which we call at-most branching. It is possible for three different language features—

number restrictions, inverse roles, and nominals—to interact in a complex way which

requires special handling; we defer the details to Section 3.5. The standard solution

to this problem involves making a nondeterministic guess as to the number of neigh-

bors of certain individuals in a model labeled with at-most restrictions, and then

instantiating these neighbors. Such an approach leads to the problems introduced

by or-branching as well as those caused by and-branching: a high degree of non-

determinism combined with large models. As we show in Section 3.5, such complexity

in unnecessary in most cases.

Finally, our informal experience is that traditional tableau algorithms are no-

toriously difficult to implement and optimize. Execution typically involves complex

interlacing of many different expansion rules, resulting in performance dependent

upon a large and complex inner loop. Efficient implementation of such an architec-

ture requires a robust understanding of the overall algorithm, which is difficult to

break down into independent sub-components. What is more, the specialized nature

of tableau algorithms means that there are few related fields from which well-known

optimization techniques can be drawn.

Key Contributions

Our goal in this thesis is to develop a novel approach to description logic reasoning

which addresses the above problems with traditional tableau methods and allows

for the implementation of reasoners that exhibit superior performance on the types

of ontologies encountered in practice. To this end, we present a number of novel

contributions:

• A new hypertableau reasoning calculus which reduces or-branching, generalizing

and extending many absorption-style optimizations. This new calculus is able to

process Horn knowledge bases entirely deterministically, and typically exhibits

6



very little nondeterminism on Horn knowledge bases extended with a small

number of non-Horn axioms. This calculus also exhibits a number of appealing

implementation properties and is particularly amenable to optimization. [Motik

et al., 2007]

• The application of a new blocking strategy (pairwise anywhere blocking) which

reduces and-branching and reduces the size of generated models. This block-

ing strategy is applicable to traditional tableau algorithms as well as our new

hypertableau calculus. [Motik et al., 2007; Motik et al., 2009]

• A novel NI-rule which handles the combination of nominals, inverse roles, and

number restrictions far more efficiently than standard tableau rules. This rule

can also be adapted to traditional tableau algorithms. [Motik et al., 2008]

• A model-caching technique which re-uses work from one consistency test in

order to speed tests for similar knowledge bases. [Shearer et al., 2008; Motik et

al., 2009]

• A new general-purpose classification algorithm which reduces the number of

individual comparisons necessary in order to compute a quasi-ordering of ele-

ments, and also allows for maximal exploitation of partial prior knowledge of

the quasi-ordering. [Shearer and Horrocks, 2009; Shearer et al., 2009]

• A novel technique for extracting subsumption and non-subsumption information

from Tarski-style models, as generated by tableau and hypertableau calculi. On

realistic test data, this approach extracts the vast majority of (non)subsumption

information from concept satisfiability tests, eliminating the need for individual

subsumption tests. [Shearer and Horrocks, 2009; Shearer et al., 2009]

In order to evaluate the efficacy of our techniques, we have implemented them

in a prototypical reasoner called HermiT [Shearer et al., 2008]. This implementation

7



demonstrates substantial performance improvements over traditional tableau reason-

ers in our tests.

Chapter Guide

In the remainder of Part I, we formally introduce Description Logics, as well as the

various DL languages and reasoning problems addressed in the body of this thesis.

Part II presents a new algorithm for searching for a model of a knowledge base in

the description logic SROIQ. Chapter 3 summarizes a few of the difficulties inherent

in developing such an algorithm and summarizes a few of our techniques for overcom-

ing them. Chapter 4 provides an informal overview of our algorithm, and Chapter 5

describes our new hypertableau calculus and blocking strategy in detail. Chapter 6

addresses implementation and optimization issues for this new calculus, including

its efficient application to less expressive logics as well as worst-case performance

characteristics. Chapter 7 compares our calculus to other reasoning techniques.

Part III addresses the efficient implementation of classification-based services for

description logics. After describing a few of the problems that arise in classification

in Chapter 8, we present our new general-purpose algorithm for deducing a quasi-

ordering in Chapter 9. Chapter 10 describes techniques for extracting partial informa-

tion about the subsumption quasi-ordering between concept names in DL knowledge

bases from Tarski-style models, such as those generated by the algorithm presented

in Part II. Related work in the field of classification is reviewed in Chapter 11.

Finally, Part IV discusses the impact of our contributions. Chapter 12 evaluates

the performance of a prototypical implementation of our techniques and compares it

with several other widely-used description logic reasoners, and Chapter 13 summarizes

our results and their implications for future research in the field.

8



Chapter 2

Description Logics

Description Logics (DLs) are a family of knowledge representation formalisms with

formally-defined syntax and semantics. Most commonly-used description logics are

decidable fragments of first-order logic, restricted to only unary and binary predicates

and carefully bounded forms of existential quantification. DLs are closely related to

modal logics [Andrka et al., 1998] and trace their history to attempts at standardizing

semantics for human-centered knowledge representations such as semantic networks

and frames [Lehmann, 1992].

Intuitively, DLs are used to describe a domain of individuals and a set of binary

relations, called roles, between those individuals. These descriptions are constructed

by defining sets of individuals with particular semantic characteristics; such sets are

called concepts. The expressiveness of a particular DL is primarily a product of the

richness of the language provided for defining concepts. Most expressive DLs further

allow the imposition of simple global semantic restrictions (called axioms) on con-

cepts and roles (e.g. that one concept or role is subsumed by another), as well as

assertions about the concept memberships of, and role relationships between, specific

individuals.

This thesis is concerned with efficiently identifying the implicit semantic conse-

quences arising from combinations of concept definitions, axioms, and assertions. In

Part II we present an algorithm that can be used to detect implicit contradictions

9



in such knowledge bases, and in Part III we show how the same algorithm can be

adapted to identify implicit subsumption relationships between concepts.

In this chapter, we formally introduce Description Logics as well as the reasoning

problems addressed by the remainder of the thesis.

2.1 Syntax and Semantics

We now define the syntax and the semantics of the description logic SROIQ.

Definition 1 (Concepts, Roles, Individuals, and Interpretations) A signature

is a triple Σ = (NR, NC , NI) consisting of mutually disjoint sets of atomic roles

NR, atomic concepts NC , and individuals NI . We additionally distinguish a subset

NsR ⊆ NR of simple atomic roles.

The set of roles over Σ is NR ∪ {R− | R ∈ NR}; roles of the form R− are inverse

roles. The function inv(·) is defined on the set of roles as follows, where R is an

atomic role: inv(R) = R− and inv(R−) = R. A role R is simple iff either R or inv(R)

is a simple atomic role.

We define the set of concepts over Σ inductively. Let R be a role, S a simple role,

a an individual, A an atomic concept, n a positive integer, and C and D concepts.

Then a concept is of one of the following forms:
> (the top concept) ⊥ (the bottom concept)
A (an atomic concept) ¬C (a negation)

C uD (a conjunction) C tD (a disjunction)
{a} (a nominal) ∃S.Self (a local reflexivity restriction)
∃R.C (an existential restriction) ∀R.C (a universal restriction)
≥ nS.C (an at-least restriction) ≤ nS.C (an at-most restriction)

At-least and at-most restrictions are types of number restrictions.

An interpretation over Σ is a tuple I = (∆I , ·I), where ∆I is a nonempty set

(the domain of I) and ·I is an interpretation function which assigns an element

aI ∈ ∆I to each individual a, a set AI ⊆ ∆I to each atomic concept A, and a

relation RI ⊆ ∆I × ∆I to each atomic role R. The interpretation function ·I is

extended to concepts and roles as follows:

10



>I = ∆I ⊥I = ∅

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI} (¬C)I = ∆I \ CI

(C uD)I = CI ∩DI (C tD)I = CI ∪DI

{a}I = {aI} (∃S.Self)I = {x | 〈x, x〉 ∈ SI}

(∃R.C)I= {x | ∃y : 〈x, y〉 ∈ RI ∧ y ∈ CI}

(∀R.C)I= {x | ∀y : 〈x, y〉 ∈ RI → y ∈ CI}

(≥ nS.C)I= {x | ]{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≥ n}

(≤ nS.C)I= {x | ]{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≤ n}

Two interpretations I = (∆I , ·I) and I ′ = (∆I
′
, ·I′) coincide on a signature Σ iff

∆I = ∆I
′

and xI = xI
′

for every x ∈ Σ.

A concept is in negation-normal form if negation appears only in front of atomic

concepts, nominals, and local reflexivity restrictions. For any concept C, there exists

a concept nnf(C) in negation-normal form such that CI = nnf(C)I for any interpre-

tation I. The concept nnf(C) can be computed from C in time linear in the size of

C by pushing negation inward using the following dualities:

¬¬C ↔ C ¬(C uD)↔ ¬C t ¬D ¬(C tD)↔ ¬C u ¬D

¬∃R.C ↔ ∀R.¬C ¬(∀R.C)↔ ∃R.¬C ¬(≤ nS.C)↔ ≥ (n+ 1)S.C

¬(≥ 1S.C)↔ ∀S.¬C ¬(≥ (n+ 1)S.C)↔ ≤ nS.C

We use ¬̇C to denote nnf(¬C). 4

Definition 2 (TBox, ABox, and RBox) A TBox T is a finite set of general con-

cept inclusions (GCIs) C v D for C and D concepts. An interpretation I satisfies a

GCI C v D iff CI ⊆ DI , and it satisfies a TBox T iff it satisfies all GCIs of T .

11



An ABox A is a finite set of assertions of the form C(a) (concept assertion),

R(a, b) (role assertion), a ≈ b (equality assertion), or a 6≈ b (inequality assertion),

where C is a concept, R is a role, and a and b are individuals. An interpretation I

satisfies a concept assertion C(a) iff aI ∈ CI , a role assertion R(a, b) iff 〈aI , bI〉 ∈ RI ,

an equality a ≈ b iff aI = bI , and an inequality a 6≈ b iff aI 6= bI . An interpretation

satisfies an ABox A iff it satisfies all assertions of A.

An RBox R is a finite set of axioms of the form Dis(S1, S2) (role disjointness),

Ref(R) (reflexivity), Irr(S1) (irreflexivity), S1 v S2 (simple role inclusion), or ω v U

(complex role inclusion), where S1 and S2 are simple roles, R is any role, ω is a finite

string R1...Rn of roles, and U is a role which is not simple.

We use Sym(R) as a shorthand for R− v R (symmetry) and Tra(U) as a shorthand

for UU v U (transitivity).

An interpretation I satisfies a role disjointness axiom Dis(S1, S2) iff SI1 ∩ SI2 = ∅,

a reflexivity axiom Ref(R) iff 〈a, a〉 ∈ RI for all a ∈ ∆I , a irreflexivity axiom Irr(S)

iff 〈a, a〉 6∈ SI for all a ∈ ∆I , and a simple role inclusion S1 v S2 iff SI1 ⊆ SI2 . An

interpretation I satisfies a role inclusion axiom R1...Rn v U iff RI1 ◦ ... ◦ RI2 ⊆ UI ,

where ◦ stands for the composition of binary relations. An interpretation satisfies an

RBox R iff it satisfies all axioms of R. 4

Definition 3 (Regular RBoxes) A strict partial order ≺ on a set A is an ir-

reflexive and transitive relation on A. A strict partial order ≺ on the set of roles

NR ∪ {R− | R ∈ NR} is a regular order iff R1 ≺ R2 whenever inv(R1) ≺ R2 for all R1

and R2. An RBox R is regular if there exists a regular order ≺ such that for every

simple role inclusion axiom S1 v S2 in R either S1 = inv(S2) or S1 ≺ S2, and for

every complex role inclusion axiom ω v U in R:

1. ω = UU , or

2. ω = inv(U), or

12



3. ω = R1...Rn and Ri ≺ U for all 1 ≤ i ≤ n, or

4. ω = UR1...Rn and Ri ≺ U for all 1 ≤ i ≤ n, or

5. ω = R1...RnU and Ri ≺ U for all 1 ≤ i ≤ n. 4

Definition 4 (Logics, knowledge bases, and inference problems) A SROIQ

knowledge base K is a a triple (T ,A,R), where T is a TBox, A is an ABox, and R

is a regular RBox. With |K| we denote the size of K—that is, the number of symbols

required to encode K on the input tape of a Turing machine (numbers can be coded

in binary). [Kutz et al., 2006]

An interpretation I is a model of K, written I |= K, if it satisfies the TBox, ABox,

and RBox of K. The basic inference problem for SROIQ that we address is checking

whether K is satisfiable—that is, checking whether a model of K exists. A concept C

subsumes a concept D, written K |= C v D, if CI ⊆ DI for each model I of K. It is

easy to see that K |= C v D if and only if K ∪ {(C u ¬D)(a)} is unsatisfiable, where

a is an individual that does not occur in K [Baader and Nutt, 2007].

AnALCHOIQ+ knowledge base is a SROIQ KB which contains no complex role

inclusion axioms. In the absence of complex role inclusion axioms, there is no distinc-

tion between simple and non-simple roles. Hence, in the context of ALCHOIQ+ we

assume that all roles are simple unless otherwise stated and, without loss of generality,

we treat ∃R.B as a syntactic shortcut for ≥ 1R.B.

Analogously, the logic SRIQ is obtained from SROIQ by disallowing nominals,

SROQ is obtained from SROIQ by disallowing inverse roles, and SHOIQ, SHIQ,

and SHOQ are obtained from SROIQ, SRIQ, and SROQ, respectively, by re-

stricting the RBox to only simple role inclusion axioms and complex role inclusions

of the form UU v U (transitivity). Finally, SHOI is obtained from SHOIQ by

disallowing number restrictions. 4

13



Horn logic is a fragment of first-order logic in which formulae are restricted to

clauses containing at most one positive literal. While Horn logic cannot represent

disjunctive information, practical query answering procedures for Horn knowledge

bases are known. We next define a subset of DL knowledge bases which can be encoded

in Horn logic; the exact encoding is given in Chapter 5.

Definition 5 (Horn-DL) Let C+, C−, and C• be three classes of concepts whose

grammar is defined as follows, where A is an atomic concept, R is a role, and n is a

positive integer:

C+ ::= > | ⊥ | A | C+ u C+ | C+ t C+ | ∃R.C+ | ∃R.Self

C− ::= > | ⊥ | ¬A | C− u C− | C− t C− | ∀R.C−

C• ::= > | ⊥ | A | ¬A | C• u C• | C− t C•

| ∃R.C• | ∀S.C• | ∀R.C+ | ≥ nR.C• | ≤ 1R.C−

The intuition behind these three classes is that any concept C+ can be encoded

in first-order clauses containing only positive literals, any concept C− can be encoded

in clauses containing only negative literals, and any concept C• can be encoded in

clauses which each contain at most one positive literal.

A DL knowledge base K is Horn if all GCIs of K are of the form > v C•. 4

14



Part II

Model Generation

15



Chapter 3

Difficulties

In this chapter, we review the traditional tableau approach to demonstrating satisfi-

ability of a DL knowledge base K by constructing (an abstraction of) a model of K.

We highlight a few of the main difficulties encountered in such model constructions

and discuss major sources of inefficiency.

While we defer a formal description of our new hypertableau reasoning calculus

to Chapter 5, this chapter summarizes the key differences between our approach and

traditional tableau methods.

3.1 Traditional Tableau Algorithms

To show that a knowledge base K = (R, T ,A) is satisfiable, a tableau algorithm

constructs a derivation—a sequence of ABoxes A0,A1, . . . ,An where A0 = A and

eachAi is obtained fromAi−1 by an application of one derivation rule.1 The derivation

rules make the information implicit in the axioms ofR and T explicit, and thus evolve

the ABox A towards a (representation of a) model of K. The algorithm terminates

either if no derivation rule is applicable to some An, in which case An represents

a model of K, or if An contains an obvious contradiction, in which case the model

construction has failed. The following derivation rules are commonly used in DL

tableau calculi.

1Some formalizations of tableau algorithms work on completion graphs [Horrocks and Sattler,
2007], which have a natural correspondence to ABoxes.

16



• t-rule: Given (C1 t C2)(s), derive either C1(s) or C2(s).

• u-rule: Given (C1 u C2)(s), derive C1(s) and C2(s).

• ∃-rule: Given (∃R.C)(s), derive R(s, t) and C(t) for t a fresh individual.

• ∀-rule: Given (∀R.C)(s) and R(s, t), derive C(t).

• v-rule: Given a GCI C v D and an individual s, derive (¬C tD)(s).

Such a ruleset exhibits two types of nondeterminism. First, when multiple different

rule applications are possible an implementation of this calculus must choose which

to apply at each step. With the exception of occasional precedence rules which must

be respected, termination or the detection of contradictions is independent of such

choices in tableau calculi; we thus call such choices don’t-care nondeterminism.

A second type of nondeterminism is introduced by the t-rule. If (C1tC2)(s) is true,

then C1(s) or C2(s) or both are true. Therefore, implementations of tableau calculi

make a nondeterministic guess and choose either C1 or C2. If one choice leads to a

contradiction, the implementation must try the other choice. Thus, K is unsatisfiable

only if exhaustive search of all combinations of choices lead to a contradiction; in

practice this is implemented by means of backtracking search. We call this don’t-

know nondeterminism.

We next discuss two sources of complexity inherent in standard tableau derivation

rules.

3.2 Or-Branching

Handing disjunctions through reasoning by case is often called or-branching. The v-

rule adds a disjunction for each GCI to each individual in an ABox and is thus a major

source of or-branching and inefficiency [Horrocks, 2007]. Consider, for example, the

17



a0 b1 a1 an−1 bn an
R R R R

¬A
∀R.¬A tA
∀R.¬A

∀R.¬A tA
¬A
∀R.¬A

∀R.¬A tA
∀R.¬A
¬A

∀R.¬A tA
∀R.¬A
¬A

∀R.¬A tA
¬A
∀R.¬A

A
∀R.¬A tA
∀R.¬A
¬A

(i)
(ii)
(iii)
(iv)

Figure 3.1: Or-Branching Example

knowledge base K1 = (T1,A1, ∅), with T1 and A1 specified as follows:

T1 = {∃R.A v A}
A1 = {¬A(a0), R(a0, b1), R(b1, a1), . . . , R(an−1, bn), R(bn, an), A(an)} (3.1)

The ABox A1 is graphically shown in Figure 3.1. The individuals occurring in the

ABox are represented as black dots, an assertion of the form A(a0) is represented

by placing A next to the individual a0, and an assertion of the form R(a0, b1) is

represented as an R-labeled arrow from a0 to b1. Initially,A1 contains only the concept

assertions shown in line (i).

To satisfy the GCI in T1, a tableau algorithm applies the v-rule, thus adding

the assertions shown in line (ii) of Figure 3.1. Tableau algorithms are usually free

to choose the order in which they process the assertions in an ABox; in fact, finding

an order that exhibits good performance in practice requires advanced heuristics

[Tsarkov and Horrocks, 2005b]. Let us assume that the algorithm chooses to process

the assertions on ai before those on bj. Hence, by applying the derivation rules to all

ai, a tableau algorithm derives the assertions shown in line (iii) of Figure 3.1; after

that, by applying the derivation rules to all bi, the algorithm derives the assertions

shown in line (iv) of Figure 3.1. The ABox now contains both A(an) and ¬A(an),

which is a contradiction. Thus, the algorithm needs to backtrack its most recent

choice, so it flips its guess on bn−1 to A(bn−1). This generates a contradiction on

bn−1, so the algorithm backtracks from all guesses for bi, changes the guess on an

to A(an), and repeats the work for all bi. This also leads to a contradiction, so the

algorithm must revise its guess for an−1; but then, two guesses are again possible for

18



an. In general, after revising a guess for ai, all possibilities for aj, i < j ≤ n, must be

reexamined, which results in exponential behavior. None of the standard backtracking

optimizations [Horrocks, 2007] are helpful: the problem arises because the order in

which the individuals are processed makes the guesses on ai independent from the

guesses on aj for i 6= j.

The GCI ∃R.A v A, however, is not inherently nondeterministic: it is equivalent to

the Horn clause ∀x, y : [R(x, y) ∧ A(y)→ A(x)], which can be applied bottom-up to

derive the assertions A(bn), A(an−1), . . . , A(a0) and eventually reveal a contradiction

on a0. These inferences are deterministic,2 so we can conclude that K1 is unsatisfi-

able without any backtracking. This example suggests that the processing of GCIs

in tableau algorithms can be “unnecessarily” nondeterministic. Hustadt et al. [2005]

have identified a class of knowledge bases without “unnecessary” nondeterminism:

SHIQ knowledge bases which are Horn can always be translated into Horn clauses,

suggesting that reasoning without any nondeterminism is possible in principle. Ide-

ally, a practical DL reasoning procedure should exhibit no nondeterminism on Horn

knowledge bases.

In the context of tableau calculi, various absorption optimizations [Horrocks, 2007]

have been developed to control the nondeterminism arising in the application of GCIs.

These optimizations are closely related to Horn transformations, but they do not

eliminate all nondeterminism from Horn KBs. We discuss these optimizations in depth

in Section 7.1.

We address the problem of or-branching in our calculus by first encoding complex

concepts and GCIs as DL-clauses—universally quantified implications containing DL

concepts and roles as predicates—and then replacing the tableau u-, t-, and v-rules

with a hyperresolution rule (Hyp-rule) that matches the antecedents of clauses to the

ABox, deriving the clauses’ consequents. This approach allows reasoning to proceed

2More precisely, each inference is deterministic, but the order in which the inferences are per-
formed is don’t-care nondeterministic.

19



a

S S

S

S S

S

(a) Ancestor Blocking

a

(b) Anywhere Blocking

Figure 3.2: And-Branching Example

with far less nondeterminism in many cases, and entirely deterministically in the case

of Horn KBs. We describe DL-clauses and the Hyp-rule informally in Section 4.1, and

provide full definitions in Chapter 5.

3.3 And-Branching

The introduction of new individuals in the ∃-rule is often called and-branching, and

it is another major source of inefficiency in tableau algorithms [Donini, 2007]. Con-

sider, for example, the (satisfiable) knowledge base K2 = (T2,A2, ∅), with T2 and A2

specified as follows (where n and m are integers):

T2 = { A1 v ≥ 2S.A2, . . . , An−1 v ≥ 2S.An, An v A1,
Ai v (B1 t C1) u . . . u (Bm t Cm) for 1 ≤ i ≤ n }

A2 = { A1(a) }
(3.2)

At-least restrictions are dealt with in tableau algorithms by the ≥-rule, which is

quite similar to the ∃-rule: from (≥ nR.C)(s), the ≥-rule derives R(s, ti) and C(ti)

for 1 ≤ i ≤ n, and ti 6≈ tj for 1 ≤ i < j ≤ n. Thus, the assertion A1(a) implies the

existence of at least two individuals in A2, which imply the existence of at least two

individuals in A3, and so on. Given K2, a tableau algorithm thus constructs a binary

tree, shown in Figure 3.2a, in which each individual is labeled with some Ai and an

element of Π = {B1, C1} × . . .× {Bm, Cm}. All individuals in the tree at depth n are

instances of An; because of the GCI An v A1, these individuals must be instances

20



t′

t

s′

s

u′

u

blocks

Figure 3.3: Forest-Like Shape of ABoxes

of A1 as well, so we can repeat the whole construction and generate an even deeper

tree. Clearly, a näıve application of the tableau rules does not terminate if the TBox

contains existential quantifiers in cycles.

To ensure termination in such cases, tableau algorithms employ blocking [Buchheit

et al., 1993; Baader and Nutt, 2007], which is based on an important observation about

the shape of ABoxes that can be derived from some input ABox A. The individuals

in A are called named (shown as black circles), and they can be connected by role

assertions in an arbitrary way. The individuals introduced by the ∃- and ≥-rules are

called blockable (shown as white circles). For example, if ∃R.C(a) is expanded into

R(a, s) and C(s), then s is called a blockable individual and it is an R-successor of a. It

is not difficult to see that, if the knowledge base does not contain nominals, no tableau

derivation rule can connect s with an arbitrary named individual: the individual s

can participate only in inferences that derive an assertion of the form D(s) with

D a concept, create a new successor of s, connect s to an existing predecessor or

successor, or, in the presence of (local) reflexivity, connect s to itself. Hence, each

ABox A′ obtained from A can be seen as a “forest” of the form shown in Figure 3.3:

each named individual can be arbitrarily connected to other named individuals and

to a tree of blockable successors. The concept label LA(s) is defined as the set of all

concepts C such that C(s) ∈ A, and the edge label LA(s, s′) as the set of all atomic

roles such that R(s, s′) ∈ A.

21



The forest-like structure of ABoxes enables blocking. Description logics such as

SHIQ and SROIQ allow for the combination of inverse roles and number re-

strictions, which has been handled in the literature by ancestor pairwise blocking

[Horrocks et al., 2000b]: for individuals s, s′, t, and t′ occurring in an ABox A as

shown in Figure 3.3, t blocks s (shown by a double border on s) if and only if

LA(s) = LA(t), LA(s′) = LA(t′), LA(s, s′) = LA(t, t′), and LA(s′, s) = LA(t′, t).3 In

tableau algorithms, the ∃- and ≥-rules are applicable only to nonblocked individuals,

which ensures termination: the number of different concept and edge labels is expo-

nential in |K|, so an exponentially long branch in a forest-like ABox must contain

a blocked individual, thus limiting the length of each branch in an ABox. Let A be

an ABox as in Figure 3.3 to which no tableau derivation rule is applicable, and in

which s is blocked by t. We can construct a model from A by unraveling—that is, by

replicating the fragment between s and t infinitely often. Intuitively, blocking ensures

that the part of the ABox between s and s′ “behaves” just like the part between t and

t′, so unraveling indeed generates a model. If our logic were able to connect blockable

individuals in a non-tree-like way, then unraveling would not generate a model; in

fact, the notion of ancestors, descendants, and blocking would itself be ill-defined.

Consider now an “unlucky” run of a tableau algorithm with ancestor pairwise

blocking on K2. The number of elements in Π is exponential in |K2|, so it can happen

that blocking comes into effect only after the algorithm constructs an exponentially

deep tree; since the tree is binary, it is doubly exponential in total. In a “lucky”

run, the algorithm can always pick Bj instead of Cj; then, the algorithm constructs

a polynomially deep binary tree, so the tree is exponential in total. Thus, the and-

branching caused by the ∃- and ≥-rules can lead to unnecessary generation of an

ABox that is doubly exponential in the size of the input, which limits the scalability

of tableau algorithms in practice.

3Our blocking definition must include both edge labels in both directions because, unlike in some
other tableau formalizations, our edge labels include only atomic roles.

22



a
R

A
∃R.>

b
R

a
R

A
∃R.>

b

∃R.>

c
R R

a
R

A
∃R.>

c
R

Figure 3.4: A Yo-Yo Example

We address the problem of and-branching with a more aggressive blocking strategy

which limits the total size of a tree in the generated model to |Π| by extending the

set of potential blockers for an individual to non-ancestors, illustrated in Figure 3.2b.

We discuss this anywhere pairwise blocking technique in Section 4.3.

3.4 Problems Due to Merging

If a logic allows number restrictions or (certain types of) equalities, then the reasoning

calculus must be extended with an additional ≈-rule which merges the two individuals

a and b in the presence of a ≈ b. Merging can easily lead to termination problems even

for very simple DLs, as shown in the following example. For simplicity, we present

the TBox of K3 as a set of DL-clauses C3.

A3 = { A(a), ∃R.>(a), R(a, b), R(a, a) }
C3 = { R(x, y1) ∧R(x, y2)→ y1 ≈ y2, A(x) ∧R(x, y)→ ∃R.>(y) } (3.3)

Consider now a derivation on A3 and C3, illustrated in Figure 3.4: from the second

clause, our Hyp-rule derives ∃R.>(b), which the ∃-rule expands to R(b, c); then, by

the first clause, we derive b ≈ a, so the ≈-rule merges b into a. Clearly, the resulting

ABox is isomorphic to the original one (that c is a blockable and b a named individual

is not relevant here), so we can repeat the same sequence of inferences, which leads

to nontermination. To the best of our knowledge, this problem was first identified by

Baader and Sattler [2001], and it is commonly known as a “yo-yo.”

This problem arises because, due to merging, a can have an unbounded number

of blockable R-successors: the blockable individual c is created as an R-successor of

23



b, but merging b into a makes c a blockable R-successor of a. This, in turn, allows

us to apply the clauses from C3 to a an arbitrary number of times, which leads to

nontermination.

This problem can be solved by always merging a descendant s into its ancestor

t, and pruning s before merging—that is, by removing all assertions containing a

blockable descendant of s and thus ensuring that t does not “inherit” new successors.4

Pruning is formally defined in Definition 13 on page 60.

Thus, before merging b into a in our example, we prune b—that is, we remove

the assertion R(b, c). Merging then produces an ABox that represents a model of A3

and C3, so the algorithm terminates. Note that pruning is well-defined only because

our ABoxes are forest-shaped, cf. Figure 3.3: if connections between individuals were

arbitrary and, in particular, cyclic, it would not be clear which part of the ABox

should be pruned.

3.5 Nominals, Inverses, and Number Restrictions

With nominals, it is possible to derive ABoxes that are not forest-like, as the following

simple example demonstrates. For presentation purposes, we use the concept ∃R.{c}

in the DL-clauses even though such concepts would be further decomposed in our

algorithm.

A4 = { A(a), A(b) }
C4 = { A(x)→ (∃R.B)(x), B(x)→ (∃R.C)(x), C(x)→ (∃S.{c})(x) } (3.4)

Successive applications of the Hyp- and ∃-rules toA4 and C4 can produce the ABox

A4
′ shown on the left-hand side of Figure 3.5. This ABox is clearly not forest-shaped:

the two paths of role atoms in A4
′ start at the named individuals a and b and end

in a named individual c. Nevertheless, if role relations between blockable individuals

remain forest-like, termination of the derivation can be ensured using blocking. Some

4Horrocks et al. [2000b] do not physically remove successors, but mark them as “not present” by
setting the relevant edge labels to ∅. This has exactly the same effect as pruning.

24



a

A
∃R.B

s1

B
∃R.C

s2

C
∃S.{c}

R R

b

A
∃R.B

s3

B
∃R.C

s4

C
∃S.{c}

R R

c

S

S

a

A
∃R.B

s1

B
∃R.C

s2

C
∃S.{c}R

R

b

A
∃R.B

s3

B
∃R.C

R
R

c
S

Figure 3.5: Non-Tree-Like Structures Due to Merging

DLs that include nominals produce only such extended forest-like ABoxes [Horrocks

and Sattler, 2001].

If a DL includes inverse roles, number restrictions, and nominals, the shape of

an ABox becomes much more involved. To this end, assume now that we extend C4

with the DL-clause S(y1, x) ∧ S(y2, x)→ y1 ≈ y2 (which axiomatizes S to be inverse-

functional and effectively introduces number restrictions). On A4
′, the Hyp-rule then

derives s2 ≈ s4. Note that both s2 and s4 are blockable individuals; furthermore,

neither individual is an ancestor of the other, so we can merge, say, s4 into s2. This

produces the ABox A4
′′ shown on the right-hand side of Figure 3.5, in which the

assertion R(s3, s2) makes A4
′′ not forest-shaped. By extending the example, it is

possible to use nominals, inverse roles, and number restrictions to arrange blockable

individuals in cycles. The derived ABoxes are thus not forest-shaped, which makes

defining suitable notions of pruning and unraveling difficult and prevents us from

using blocking to ensure termination of the calculus.

3.5.1 Promoting Blockable Individuals

To solve this problem, we need to extend the arbitrarily interconnected part of A4
′′

by changing the status of s2 from a blockable into a root individual—that is, an

individual similar to the named ones in that it can be arbitrarily interconnected. Our

25



a s1 s2

b s3 s4

c

a s1 s2

b s3 s4

c

a s1

s2

b s3

c

Figure 3.6: The Introduction of Root Individuals

extended forest-like ABoxes thus consist of a set of arbitrarily interconnected root

individuals each of which can be the root of a “tree” (ignoring reflexive connections

and connections back to root individuals) that otherwise consists entirely of blockable

individuals (see Figure 3.3 on page 21). Named individuals are just the subset of the

root individuals that occur in the input ABox. When we talk about individuals,

we mean either root or blockable ones (see Definition 13 on page 60 for a formal

definition).

Returning to our example, after changing the status of s2 from a blockable into a

root individual, only s1 and s3 are blockable in A4
′′, so the ABox has the extended

forest-like shape and we can apply blocking and pruning as usual. This is schematically

shown in Figure 3.6. More generally, we apply the following preliminary version of a

Nominal Introduction rule (NI -rule), which we denote with (*) for easier reference:

We change s into a root individual whenever A contains assertions R(s, a)

and A(s) where a is a root or a named individual, s is a blockable individ-

ual that is not a successor of a, and a must satisfy an at-most restriction

≤ nR−.A.

Note that, if s is a successor of a, then the part of the ABox involving s and a is

forest-shaped, so the NI -rule need not be applicable.

This solution, however, introduces another problem: the number of root individ-

uals can now grow arbitrarily, as shown in the following example.

A5 = { A(b) }

C5 =

{
A(x)→ (∃R.A)(x), A(x)→ (∃S.{a})(x),
S(y1, x) ∧ S(y2, x) ∧ S(y3, x)→ y1 ≈ y2 ∨ y2 ≈ y3 ∨ y1 ≈ y3

}
(3.5)

26



b

ac

d

S

S

S

R

R

A
∃R.A
∃S.{a}

b
R

ad

S

S

R

b
R

ad

e

S

S

R

R
S

Figure 3.7: A Yo-Yo With Root Individuals

On A5 and C5, our calculus can produce the ABox A5
′ shown on the left-hand side of

Figure 3.7. ABox A5
′ does not explicitly contain at-most restriction concepts, so the

precondition of (*) cannot be checked directly; we shall discuss this issue shortly. For

the moment, however, please note that the last DL-clause in C5 corresponds to the

axiom > v ≤ 2S−.>, so individuals c and d can be seen as satisfying the precondition

of (*); therefore, we change them into root individuals. Furthermore, the third DL-

clause from C5 is not satisfied, so the Hyp-rule derives c ≈ b, and the ≈-rule can merge

c into b. Since d is now not a blockable individual, we cannot prune it, so we obtain

the ABox A5
′′ shown in the middle of Figure 3.7.5 Since ∃R.A(d) is not satisfied, we

can extend A5
′′ with R(d, e), A(e), ∃R.A(e), ∃S.{a}(e), and S(e, a) to produce the

ABox A5
′′′ shown on the right-hand side of Figure 3.7. Individual e can be seen as

satisfying the precondition of (*), so it is changed into a root individual. This ABox

is isomorphic to A5
′, so we can repeat the same inferences forever.

3.5.2 The Traditional Tableau Solution

To guarantee termination, the traditional SHOIQ tableau calculus [Horrocks and

Sattler, 2007] uses an NN -rule that refines condition (*). We briefly summarize this

rather complex tableau rule here; our simpler and more efficient solution is described

in Section 3.5.3, below.

5To reduce clutter, we do not repeat the labels of individuals.

27



Assume that an ABox A contains an individual s that satisfies the precondition

of (*)—that is, A contains assertions R(s, a), A(s), and ≤ nR−.A(a), where s is a

blockable individual that is not a successor of a root or named individual a. If A

already contains root individuals z1, ..., zn such that

⋃
1≤i≤n

{A(zi), R(zi, a)} ∪ {zi 6= zj | 1 ≤ i < j ≤ n} ⊆ A

then the ≤-rule simply merges s into some zi; no new root individual needs to be

introduced. If A does not contain such z1, ..., zn, the NN -rule nondeterministically

guesses the exact number m ≤ n of R−-neighbors of a that are members of A,

generates m fresh root individuals w1, ..., wm, and extends A with the assertions

{A(wi), R(wi, a) | 1 ≤ i ≤ m} ∪ {wi 6≈ wj | 1 ≤ i < j ≤ m} ∪ {≤ mR.A(a)}.

This allows the NN -rule to be applied at most once for each concept of the form

≤ nR−.A and each root individual, which ensures termination in the “yo-yo” case:

the number of neighbors introduced for each root individual is clearly finite.

For example, Figure 3.8 shows applications of the NN - and ≤-rules to the ABox

A6 = { ∃R.∃R.{c}(a), ≤ 3R−.>(c) }. In A6
1, shown in the left-hand side of the

figure, the named individual c has a blockable R−-neighbor and must satisfy the

restriction ≤ 3R−.>. The NN -rule nondeterministically chooses whether to introduce

one, two, or three fresh root individuals; the parallel branches of the derivation are

shown in the center of the figure. The introduction of a single individual, shown in

the top branch of Figure 3.8, results in deterministic application of the ≤-rule as the

blockable individual b is merged into the fresh root individual z1, shown in the upper

right of the figure. For derivation paths on which more than one fresh root individual

is introduced, application of the ≤-rule is nondeterministic: b can be merged into

any of the new root individuals, with each choice resulting in a new branch of the

28



derivation. Such branching can be costly in practice: all derivation paths must be

fully explored in order to identify an unsatisfiable knowledge base.

a

∃R.∃R.{c}

b

∃R.{c}
R

c

≤ 3R−.>
R

a

∃R.∃R.{c}

b

∃R.{c}

c

≤ 1R−.>
≤ 3R−.>

z1 a

∃R.∃R.{c}

z1

∃R.{c}

c

≤ 1R−.>
≤ 3R−.>

a

∃R.∃R.{c}

b

∃R.{c}

c

≤ 2R−.>
≤ 3R−.> z1

z2

a

∃R.∃R.{c}

z1

∃R.{c}

c

≤ 2R−.>
≤ 3R−.>

z2

a

∃R.∃R.{c}

z2

∃R.{c}

c

≤ 2R−.>
≤ 3R−.>

z1

a

∃R.∃R.{c}

b

∃R.{c}

c

≤ 3R−.>
z1

z2

z3

a

∃R.∃R.{c}

z1

∃R.{c}

c

≤ 3R−.> z2

z3

a

∃R.∃R.{c}

z2

∃R.{c}

c

≤ 3R−.> z1

z3

a

∃R.∃R.{c}

z3

∃R.{c}

c

≤ 3R−.> z1

z2

Figure 3.8: An application of the NN -rule

Although the NN -rule does ensure termination of the tableau algorithm, it is a po-

tential source of inefficiency in knowledge bases in which large numbers appear within

at-most concepts: an application of the NN -rule involving a concept ≤ nR.C guesses

among n different possible sizes for the neighbor set, and subsequent applications of

the ≤-rule must choose how to merge the new roots with blockable individuals. In

the case of just a single blockable neighbor, this results in a derivation tree with n2

branches. Furthermore, the introduction of new root individuals can result in unnec-

essary processing and large models.

29



a

∃R.∃R.{c}

b

∃R.{c}
R

c

≤ 3R−.>
R

a

∃R.∃R.{c}
z1

∃R.{c}

c

≤ 3R−.>

a

∃R.∃R.{c}
z2

∃R.{c}

c

≤ 3R−.>

a

∃R.∃R.{c}
z3

∃R.{c}

c

≤ 3R−.>

Figure 3.9: An application of the NI-rule

3.5.3 The NI -rule

As a replacement for the NN -rule described above, we introduce a new NI -rule,

which also refines (*). Again assume that A contains an individual s that satisfies the

precondition of (*)—that is, A contains assertions R(s, a) and A(s), where a is a root

or a named individual, s is a blockable individual that is not a successor of a, and a

must satisfy an at-most restriction ≤ nR−.A. In any model of A, there can be at most

n different individuals bi that participate in assertions of the form R(bi, a) and A(bi).

Hence, we associate with a a set of n fresh root individuals {b1, . . . , bn} that represent

the R−-neighbors of a; unlike the root individuals introduced by the NN -rule, we

do not assume that bi 6= bj. Instead of choosing some subset of these individuals

to introduce and relying upon the ≤-rule to merge them with blockable neighbors,

however, we promote blockable individuals to root individuals directly: to turn s into

a root individual, we nondeterministically choose bj from this set and merge s into

bj. In this way, the number of new root individuals that can be introduced as a result

of the at-most restriction ≤ nR−.A on a is limited to n.

An application of our NI-rule to the ABox A7 = { ∃R.∃R.{c}(a), ≤ 3R−.>(c) }

is given in Figure 3.9.

In the “root yo-yo” example from Figure 3.7, the NI -rule introduces at most

30



two fresh root individuals. When the NI -rule is applied for the third time, instead

of introducing e, one of the previously introduced root individuals is reused, which

ensures termination of the calculus.

The complete definition of the NI -rule is given in Table 5.4 on page 64.

3.5.4 Annotated Equalities

When formulating the NI -rule, we are faced with a technical problem: at-most re-

striction concepts are translated in our calculus into DL-clauses, which makes testing

the condition (*) from page 26 difficult. For example, an application of the Hyp-rule

to the third DL-clause in (3.5) (obtained from the axiom > v ≤ 2S−.>) can produce

an equality such as c ≈ b; this equality alone does not reflect the fact that a must

satisfy the at-most restriction ≤ 2S−.>. To enable application of the NI -rule, we

introduce annotated equalities in which the annotations establish an association with

the at-most restriction. The third DL-clause from (3.5) is thus represented in our

algorithm as follows:

S(y1, x) ∧ S(y2, x) ∧ S(y3, x)→
y1 ≈ y2 @x

≤2S−.> ∨ y2 ≈ y3 @x
≤2S−.> ∨ y1 ≈ y3 @x

≤2S−.>
(3.6)

The Hyp-rule then derives c ≈ b@a
≤2S−.>, which has the same meaning as c ≈ b; how-

ever, the annotation says that, since a must satisfy the at-most restriction ≤ 2S−.>,

both b and c must also be merged with one of the (two) individuals reserved as S−-

neighbors of a. The formal definition of annotated equalities is given in Definition 11

on page 55, and our final formulation of the NI -rule is given in Table 5.4 on page 64.

3.5.5 Nominals and Merging

The introduction of the NI -rule leads to another problem: repeated merging between

root individuals can lead to nontermination in a “caterpillar” derivation. Consider,

for example, an application of the hypertableau calculus to the following knowledge

31



base:

A8 =
{
S(a, a), ∃R.B(a)

}
C8 =

{
B(x)→ ∃R.C(x), C(x)→ ∃S.D(x),
D(x)→ x ≈ a, S(y1, x) ∧ S(y2, x)→ y1 ≈ y2 @x

≤1S−.>

}
(3.7)

The ABox and the first DL-clause cause the introduction of two new blockable

individuals b and c; the next two DL-clauses connect c with a by the role S; the

last DL-clause produces c ≈ c@x
≤1S−.>; and an application of the NI -rule to this

assertion causes c to become a root individual. The ABox A8
′ resulting from these

inferences is shown in the left-hand side of Figure 3.10a. Since S is inverse-functional,

the individuals a and c must be merged. Because individual c is a root, it is no longer

a descendant of a, so we can choose to merge a into c. The blockable individual b is

then pruned (in order to avoid the problems outlined in Section 3.4), and the resulting

ABox is shown in the middle part of Figure 3.10a. The existential restriction ∃R.B on

c, however, is not satisfied, so a similar sequence of rule applications constructs the

ABox A8
′′ shown in the right-hand side of of Figure 3.10a. This ABox is isomorphic

to A8
′, so the same inferences can be repeated forever.

This problem can be intuitively explained by the following observation. The NI -

rule introduces fresh root individuals as neighbors of an existing root individual; thus,

each root individual in an ABox can be seen as a part of a “chain” showing which

individual caused the introduction of which root individual. Each chain is initially

anchored at a named individual: such individuals occur in the input ABox and are

not introduced by the NI -rule. The length of a path of blockable individuals can be

used to limit the length of the “chains” of root individuals. If we allow chain anchors

to be removed from an ABox, then the chains remain limited in length in any given

ABox. Over the course of derivation, however, one end of the chain can be extended

indefinitely as the other end is shortened.

We solve this problem by allowing named individuals to be merged only into

other named individuals, as specified by the postcondition of the ≈-rule in Table 5.4

32



a
S

b

c

R

R

S

∃R.B
D

B
∃R.C

C
∃S.D

c
S

C
∃S.D
∃R.B
D

c
S

d

e

R

R

S

C
∃S.D
∃R.B
D

B
∃R.C

C
∃S.D

(a) Nonterminating Variant

a
S

b

c

R

R

S

∃R.B
D

B
∃R.C

C
∃S.D

a
S

b

R R

∃R.B
D
C
∃S.D

B
∃R.C

(b) Terminating Variant

Figure 3.10: The “Caterpillar” Example

on page 64. This ensures that each chain of root individuals always remains anchored

at a named individual. In our example, instead of merging a into c, we merge c into

a, which results in the ABox shown in Figure 3.10b. No derivation rule is applicable

to this ABox, so the algorithm terminates.

3.5.6 The NI -Rule and Unraveling

The NI -rule is required not only to ensure that ABoxes are forest shaped, but also to

enable the application of blocking and unraveling. Consider, for example, the knowl-

edge base K9 = {C9,A9, ∅} shown in (3.8), in which we omit the annotations on

equalities for the sake of clarity. Intuitively, the axioms of the knowledge base state

that the individual a can have no R−-neighbors, and that there is an infinite chain of

33



a

A
∃R.B

b

B
∃R.B
∃S.{a}

c

B
∃R.B
∃S.{a}

d

B
∃R.B
∃S.{a}

R
S

R

S

R

(a) Premature Blocking

a

A
∃R.B

b

B
∃R.B
∃S.{a}

c

B
∃R.B
∃S.{a}

d

B
∃R.B
∃S.{a}

e

B
∃R.B
∃S.{a}

R
S

R

S

R

S

R

S

a

A
∃R.B

b

B
∃R.B
∃S.{a}

c

B
∃R.B
∃S.{a}

d
R

B
∃R.B
∃S.{a}

R
S

R

S

R

S

(b) A Correct Derivation

Figure 3.11: The NI -rule and Unraveling

individuals each of which is an S−-neighbor of a.

A9 = { A(a), (∃R.B)(a), }

C9 =


A(x) ∧R(y, x)→ ⊥, B(x)→ (∃R.B)(x), B(x)→ (∃S.{a})(x),
R(y1, x) ∧R(y2, x)→ y1 ≈ y2,
S(y1, x) ∧ S(y2, x) ∧ S(y3, x) ∧ S(y4, x)→

y1 ≈ y2 ∨ y1 ≈ y3 ∨ y1 ≈ y4 ∨ y2 ≈ y3 ∨ y2 ≈ y4 ∨ y3 ≈ y4,


(3.8)

Without the NI -rule, an application of our calculus to A9 and C9 might produce

the ABox A9
′ shown in Figure 3.11a. The individual d is blocked in A9

′ by the

individual c, so the derivation terminates. Note that the last DL-clause from C9 (which

corresponds to the axiom > v ≤ 3S−.>) is satisfied: a is the only individual in A9
′

that has S−-neighbors and it has only two such neighbors. To construct a model from

34



A9
′, we unravel the blocked parts of the ABox—that is, we construct an infinite path

that extends past d by “duplicating” the fragment of the model between c and d an

infinite number of times. This, however, creates additional S−-neighbors of a, which

invalidates the last DL-clause from C9; thus, the unraveled ABox does not define a

model of A9 and C9.

The NI -rule elegantly solves this problem. Since a must satisfy an at-most restric-

tion of the form ≤ 3S−.>, as soon as S(b, a), S(c, a), and S(d, a) are derived, the

NI -rule is applied to turn b, c, and d into root individuals. This corrects the problems

with unraveling: root individuals do not become blocked, so we introduce another

fresh blockable individual e. This individual is merged with another S−-neighbor of

a, producing an individual with two R−-neighbors, as illustrated in Figure 3.11b. R

is inverse-functional, however, so the neighbors are merged. Merging continues until

b has been merged into a, causing a to become its own R-neighbor, at which point

our algorithm correctly determines that the knowledge base represented by A9 and

C9 is unsatisfiable.

35



Chapter 4

Algorithm Overview

In this chapter we present an informal overview of our hypertableau algorithm that

addresses the problems due to or- and and-branching outlined in Chapter 3. We begin

by describing the relationship between our calculus and resolution-based techniques.

4.1 Derivation Rules

The hyperresolution calculus [Robinson, 1965] has often been used for first-order

theorem proving. It works on clauses—implications of the form
∧n
i=1 Ui →

∨m
j=1 Vj

where Ui and Vj are first-order atoms. The conjunction
∧n
i=1 Ui is called the antecedent,

and the disjunction
∨m
j=1 Vj is called the consequent ; we sometimes omit → if the

antecedent is empty. For Di a possibly empty disjunction of literals and σ the most

general unifier of (A1, B1), . . . , (Am, Bm), the hyperresolution derivation rule is defined

as follows (assuming that the unifier σ exists):

A1 ∨D1 . . . Am ∨Dm B1 ∧ . . . ∧Bm → C1 ∨ . . . ∨ Ck
D1σ ∨ . . . ∨Dmσ ∨ C1σ ∨ . . . ∨ Ckσ

As is usual in resolution theorem proving, the above notation is intended to be ag-

nostic with respect to disjunct ordering: the notation Ai ∨Di does not imply that

Ai is the left-most disjunct in the disjunction. To make such a hyperresolution cal-

culus refutationally complete for first-order logic, one additionally needs a factoring

derivation rule, which we do not discuss any further.

36



The hypertableau calculus [Baumgartner et al., 1996] is based on the observation

that, if the literals in C1σ ∨ . . . ∨ Cnσ do not share variables, we can replace the clause

with a nondeterministically chosen atom Ciσ that we assume to be true. If we assume

that all clauses are safe (i.e., that each variable occurring in a clause also occurs in

the clause’s antecedent), then clauses with empty antecendents, such as Ai ∨Di, and

C1σ ∨ . . . ∨ Cnσ, are always ground, so they can always be nondeterministically split

into atoms. An inference in such a hypertableau calculus is written as

A1 . . . Am B1 ∧ . . . ∧Bm → C1 ∨ . . . ∨ Ck
C1σ | . . . | Ckσ

where σ is the most general unifier of (A1, B1), . . . , (Am, Bm) and | represents or-

branching. On Horn clauses, each inference is deterministic,1 and the calculus exhibits

a “minimal” amount of don’t-know nondeterminism on general clauses.

The hypertableau calculus can be easily applied to DLs: GCIs can be translated

into first-order formulae [Borgida, 1996], which can then be converted into clauses by

Skolemization, as shown in the following example.

A v ∃R.B  ∀x : [A(x)→ ∃y : R(x, y) ∧B(y)]  
A(x)→ B(f(x))
A(x)→ R(x, f(x))

Let A be an ABox containing the assertions A(a), R(a, b), and B(b). The GCI

A v ∃R.B is clearly satisfied in A, so there is no need to perform any inference.

The clauses obtained by Skolemization, however, are not satisfied in A, so the hyper-

tableau calculus derives R(a, f(a)) and B(f(a)). Hence, Skolemization may make the

calculus perform unnecessary inferences, which may be inefficient.

In order to avoid this, our calculus does not work with Skolemized clauses, but

instead preserves the limited forms of explicit existential quantification permitted in

description logics.

1As mentioned before, the order in which inferences are applied is nevertheless don’t-care non-
deterministic.

37



4.2 Calculus Overview

We begin by preprocessing a SROIQ KB K into a pair Ξ(K) = (ΞT R(K),ΞA(K)),

where ΞA(K) is an ABox and ΞT R(K) is a set of DL-clauses—implications of the form∧n
i=1 Ui →

∨m
j=1 Vj, where Ui are of the form R(x, y) or A(x), and Vj are of the form

R(x, y), A(x), ≥ nR.C(x), or x ≈ y. The preprocessing step is introduced formally

in Section 5.1.

The DL-clauses in ΞT R(K) are used in the Hyp-rule, which is inspired by the

hypertableau derivation rule and forms the basis of our calculus. For example, a GCI

∃R.¬A v B is translated into a DL-clause R(x, y)→ B(x) ∨ A(y); then, if an ABox

contains R(a, b), the Hyp-rule derives either B(a) or A(b).

Our calculus handles the existential quantification implicit in assertions of the

form ≥ nR.C(a) directly using the tableau-style ≥-rule, which simply introduces

new ground facts and constants.

At-most restrictions are translated in our approach into DL-clauses containing

equalities; for example, the axiom A v ≤ 2R.B is translated into the DL-clause

A(x)∧R(x, y1)∧B(y1)∧R(x, y2)∧B(y2)∧R(x, y3)∧B(y3)→ y1 ≈ y2∨y1 ≈ y3∨y2 ≈ y3.

While a concept of the form ≤ nR.B can be encoded using O(log n) bits, the corre-

sponding DL-clause contains O(n2) literals; our translation thus incurs an exponential

blowup. Neither traditional tableau algorithms nor näıve hypertableau algorithms are

likely to be able to efficiently handle large numbers in number restrictions, and spe-

cialized algorithms, such as those proposed by Haarslev and Möller [2001b], Haarslev

et al. [2001b], and Faddoul et al. [2008], may be required. In practice, however, few

ontologies in common use employ large number restrictions, and this blowup seldom

dominates the overall space or time requirements of our algorithm.

Because of the translation described in the previous paragraph, the Hyp-rule can

derive equalities of the form s ≈ t. These are then dealt with using the ≈-rule: when-

38



ever s ≈ t ∈ A and s 6= t, the ≈-rule replaces s with t or vice versa in all assertions

in A; this is usually called merging.

Apart from the Hyp-, the ≥-, and the ≈-rules, our calculus contains the ⊥-rule

that detects obvious contradictions of the form s 6≈ s, and the NI -rule that ensures

termination in the presence of nominals, number restrictions, and inverse roles. We

discuss the NI -rule in more detail in Section 3.5.

The rules of the algorithm are formalized in Definition 13 on page 60 and Table 5.4

on page 64, and the reader may find it useful to briefly examine these definitions before

continuing.

4.3 Anywhere Pairwise Blocking

We employ pairwise blocking as discussed in Section 3.3 to ensure termination of the

calculus; to curb and-branching, however, we extend it to anywhere pairwise blocking.

The key idea is to extend the set of potential blockers for s beyond the ancestors of s.

In doing so, we must avoid cyclic blocks: if s is allowed to block t and t can block s,

then neither s nor t is guaranteed to have all its successors constructed, which would

render the calculus incorrect. Therefore, we parameterize our algorithm with a strict

ordering ≺ on individuals that contains the ancestor relation (i.e. if a is an ancestor of

b, then a ≺ b). We allow t to block s only if, in addition to the conditions mentioned

in Section 3.3, we have t ≺ s. This version of blocking is formalized in Definition 13 on

page 60. Note that, if ≺ coincides with the ancestor relation, then anywhere blocking

becomes equivalent to ancestor blocking.

Anywhere blocking can reduce and-branching in practice. Consider again the

knowledge base K2 from Section 3.3. After we exhaust the exponentially-many mem-

bers of Π, all subsequently-created individuals will be blocked. In the best case, we can

always choose Bj instead of Cj, so we create a polynomial path in the tree and then

use the individuals from that path to block their siblings, as shown in Figure 3.2b.

39



Hence, there is a derivation for K2 with anywhere blocking that can be constructed

in polynomial time.

4.4 Nominal Guard Concepts

Negative nominal concepts of the form ¬{a} can be converted to ABox assertions dur-

ing preprocessing, so our calculus need not handle them. Positive nominal concepts,

however, are naturally translated into equalities containing constants; for example,

> v ¬A t {a} corresponds to A(x)→ x ≈ a. Such DL-clauses are inconvenient: given

an equality assertion a ≈ b, the ≈-rule would need to replace all occurrences of a with

b not only in the assertions, but in the DL-clauses as well; thus, the mentioned DL-

clause should be replaced with A(x)→ x ≈ b.

We avoid rewriting DL-clauses by replacing constants in the antecedents of DL-

clauses with new variables, which we bind to the original constants using nomi-

nal guard concepts. For example, > v ¬A t {a} is transformed into the DL-clause

A(x) ∧Oa(z{a})→ x ≈ z{a} and the assertion Oa(a); the new predicate Oa is a nomi-

nal guard concept. All constants are thus “pushed” into the assertions, so the ≈-rule

can perform replacements only in the ABox.

This technique allows the set of DL-clauses to remain constant throughout a

derivation, which simplifies analysis of our calculus. A constant clause set also aids

efficient implementations of the Hyp-rule.

40



Chapter 5

The Hypertableau Calculus for
SROIQ

We now formally present the hypertableau algorithm that can be used to test consis-

tency of a SROIQ knowledge base K. In the case that K is consistent, our procedure

can also be to used to construct a model which shares some useful properties with

models of K. High-level reasoning services such as classification can often be imple-

mented more efficiently using such models than is possible using black-box consistency

testing alone; the procedure described in Chapter 10 for extraction of subsumption

information is one example.

The various steps in our algorithm are summarized in Figure 5.1. The algorithm

consists of two major phases: the preprocessing phase transforms a Description Logic

knowledge base into an equisatisfiable first-order theory of a particular form; this

phase is described in Section 5.1. The hypertableau phase searches for (an abstraction

of) a model of the transformed knowledge base, and is described in Section 5.2.

5.1 Preprocessing

The goal of the preprocessing phase is to transform a SROIQ knowledge base K into

an ABox ΞA(K) and a set of DL-clauses ΞT R(K) such that there is a correspondence

between models of ΞA(K)∪ΞT R(K) and models of K. This correspondence is closely

related to the notion of model-conservative extensions, as described by Lutz et al.

41



K (a SROIQ knowledge base)

Ω(K) (an ALCHOIQ+ knowledge base)

∆(Ω(K)) (a normalized ALCHOIQ+ knowledge base)

ΞT R(∆(Ω(K)))
(a set of HT-clauses)

ΞA(∆(Ω(K)))
(an HT-ABox)

role axiom encoding (see Section 5.1.1)
(exponential increase in size)

normalization (see Section 5.1.2)

clausification (see Section 5.1.3)

Preprocessing encodes
a SROIQ knowledge
base K as a set of HT-
clauses and an HT-
ABox which together
form a CMC-encoding
(defined in Defini-
tion 6) of K. Such an
encoding is equisat-
isfiable with K, and
models of the encoding
coincide with models of
K on concept and indi-
vidual names occurring
in K.

(an HT-ABox)

⊥

⊥

A′

rule application

The hypertableau cal-
culus (described in
Section 5.2) repeat-
edly applies derivation
rules to elaborate the
implications of clauses
and previously-derived
facts. If an ABox A′
can be derived which
does not contain ⊥,
and to which no fur-
ther derivation rules
can be applied, then a
model for Ξ(∆(Ω(K)))
can be constructed
from A′. If no such
ABox exists then
Ξ(∆(Ω(K))) is incon-
sistent. The maximum
depth of such a deriva-
tion tree is doubly-
exponential in the size
of Ξ(∆(Ω(K))).

Figure 5.1: Overview of Hypertableau Reasoning

42



[2007]. We introduce the preprocessing phase by first defining its end result, and then

summarizing the individual steps involved.

Definition 6 (Model-Conservative Encoding) LetK be a first-order theory over

signature Σ = (NR, NC , NI), and let K′ be a first-order theory over (possibly different)

signature Σ′. Then K′ is a model-conservative encoding of K if:

• for every model I of K, there exists a model I ′ of K′ such that I ′ and I coincide

on (NR, NC , NI), and

• for every model I ′ of K′, there exists a model I of K such that I ′ and I coincide

on (NR, NC , NI).

K′ is a concept-model-conservative encoding (abbreviated CMC encoding) of K if:

• for every model I of K, there exists a model I ′ of K′ such that I ′ and I coincide

on (∅, NC , NI), and

• for every model I ′ of K′, there exists a model I of K such that I ′ and I coincide

on (∅, NC , NI). 4

Unlike model-conservative extensions, model-conservative encodings of K do not

necessarily include K as a subset. Further, CMC encodings preserve only the inter-

pretations of concepts and individuals, not the interpretations of roles.

Definition 7 (DL-Clause) Let NV be a set of variables disjoint from the set of

individuals NI . An atom is an expression of the form >(s), A(s), ≥ nS.A(s), R(s, t),

or s ≈ t, for s and t individuals or variables, A an atomic concept, R an atomic role,

S a (possibly inverse) role, and n a positive integer. A DL-clause is an expression of

the form

U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn

43



Table 5.1: Satisfaction of DL-Clauses in an Interpretation

I, µ |= >(s) iff sI,µ ∈ ∆I

I, µ |= A(s) iff sI,µ ∈ AI
I, µ |= ≥ nS.A(s) iff sI,µ ∈ (≥ nS.A)I

I, µ |= R(s, t) iff 〈sI,µ, tI,µ〉 ∈ RI
I, µ |= s ≈ t iff sI,µ = tI,µ

I, µ |=
∧m
i=1 Ui →

∨n
j=1 Vj iff I, µ |= Ui for each 1 ≤ i ≤ m implies

I, µ |= Vj for some 1 ≤ j ≤ n

I |=
∧m
i=1 Ui →

∨n
j=1 Vj iff I, µ |=

∧m
i=1 Ui →

∨n
j=1 Vj for all mappings µ

I |= C iff I |= r for each DL-clause r ∈ C

where Ui and Vj are atoms, m ≥ 0, and n ≥ 0. The conjunction U1 ∧ . . . ∧ Um is

called the antecedent, and the disjunction V1 ∨ . . . ∨ Vn is called the consequent. The

empty antecedent and the empty consequent of a DL-clause are written as > and ⊥,

respectively.

Let I = (4I , ·I) be an interpretation and µ : NV →4I a mapping of vari-

ables to elements of the interpretation domain. Let aI,µ = aI for an individual a

and xI,µ = µ(x) for a variable x. Satisfaction of an atom, a DL-clause, and a set of

DL-clauses C in I and µ is defined in Table 5.1. 4

Note that DL clauses contain no negation, even within atoms. Our algorithm

encodes literal concepts using new atomic concept names, e.g. by replacing ¬A with

a new concept Q¬A, and enforcing the semantic connection between A and Q¬A with

a DL-clause of the form A(x)∧Q¬A(x)→ ⊥. For the sake of brevity, we use ¬A as a

shorthand for the atomic concept Q¬A in DL-clauses, and omit the extra DL-clauses

in examples.

For ease of presentation, the preprocessing phase is broken down into several

distinct steps, as shown in Figure 5.1. First, complex role inclusion axioms are encoded

as TBox axioms; the procedure is described in Definition 8. Next, complex concepts

occurring in the ABox and nested within TBox axioms are replaced with atomic

concepts whose semantics are defined with additional axioms, and all axioms are

44



transformed to a simpler form; this normalization is described in Section 5.1.2. Finally,

the normalized Description Logic knowledge base is translated into the clause format,

and accompanying ABox, used directly by our reasoning algorithm; clausification is

described in Section 5.1.3.

5.1.1 Elimination of Role Inclusion Axioms

Complex role inclusion axioms are handled in tableau algorithms using a collection

of special expansion rules. For example, if R is transitive (RR v R) and an ABox

contains ∀R.C(s) and R(s, t), then a special ∀+-rule derives ∀R.C(t).

In our algorithm, however, concepts of the form ∀R.C are translated into DL-

clauses, so such a ∀+-rule cannot easily be applied. Instead of handling complex role

inclusions directly, we encode a SROIQ knowledge base K into an ALCHOIQ+

knowledge base Ω(K). This encoding eliminates all complex role inclusion axioms,

but simulates their effects using additional GCIs.

Our encoding makes use of the standard translation of complex role inclusion

axioms into automata, as described by Horrocks and Sattler [2004] and by Kutz et

al. [2006]. Given a role box R, this translation produces, for each role R, a nonde-

terministic finite automata BR such that if a path R1(a0, a1)...Rn(an−1, an) requires

the presence of R(a0, an) in all models of R, then BR accepts the string R1...Rn. For

example, if the role R is transitive in R, then BR accepts the strings R, RR, RRR,

etc.

For each universal ∀R.C occurring in a knowledge base, we encode the automaton

BR by introducing new atomic concepts for each state and adding GCIs to model

transitions between states, as follows:

Definition 8 Given a SROIQ knowledge base K = (T ,A,R), the concept closure

of K is the smallest set of concepts (+K) such that

• if C v D ∈ T , then nnf(¬C tD) ∈ (+K),

45



• if C(a) ∈ A, then nnf(C) ∈ (+K),

• if C ∈ (+K) and D syntactically occurs in C, then D ∈ (+K),

• if ≤ nR.C ∈ (+K), then ¬̇C ∈ (+K), and

• if ∀R.C ∈ (+K), S v∗R R, and Tra(S) ∈ R, then ∀S.C ∈ (+K).

For each role R occurring in K, let the translation of R wrt K as described by Kutz

et al. [2006] be the nondeterministic finite automaton BR = (PR, NR∪{ε}, δR, iR, FR)

with states PR, input symbols NR ∪ {ε}, nondeterministic transition function δR,

initial state iR, and final states FR. For simplicity, we assume that the automaton BR

and BR′ for distinct roles R and R′ do not share states (i.e. PR ∩ PR′ = ∅). We use

L(BR) to denote the language accepted by BR.

The Ω-encoding of K is the ALCHOIQ+ knowledge base Ω(K) = (R′, T ′,A)

where R′ is obtained from R by removing all complex role inclusion axioms and

T ′ = T ∪ {∀R.C v QC
iR
| ∀R.C ∈ (+K)}

∪ {QC
f v C | ∀R.C ∈ (+K) and f ∈ FR}

∪ {QC
p v ∀R′.QC

p′ | ∀R.C ∈ (+K), R′ ∈ NR, and p′ ∈ δR(p,R′)}

∪ {QC
p v QC

p′ | ∀R.C ∈ (+K) and p′ ∈ δR(p, ε)}

where QC
p is a fresh atomic concept for each concept C, and automata state p. 4

Similar encodings are known for various description [Tobies, 2001] and modal

[Schmidt and Hustadt, 2003] logics. Note that, in order to guarantee decidability [Hor-

rocks et al., 2000a], number restrictions and local reflexivity are allowed in SROIQ

only on simple roles—that is, on roles not occurring as consequents of complex role

inclusion axioms; for similar reasons, role disjointness, irreflexivity, and asymmetry

axioms are also allowed only on simple roles.

We begin by recalling three results by Kutz et al. [2006] that will be useful in the

proofs that follow:

46



Lemma 1 ([Kutz et al., 2006]) Let K = (T ,A,R) be a SROIQ knowledge base.

Then I is a model of R if and only if, for each (possibly inverse) role R occurring in

R, each word ω ∈ L(BR), and each 〈x, Y 〉 ∈ ωI, it is the case that 〈x, y〉 ∈ RI.

Lemma 2 ([Kutz et al., 2006]) Let K = (T ,A,R) be a SROIQ knowledge base,

and let R be a role occurring in K. Then R ∈ L(BR), and, if ω v R ∈ R, then

ω ∈ L(BR).

Lemma 3 ([Kutz et al., 2006]) For knowledge base K = (T ,A,R) and role R, the

size of the the automaton encoding BR of R with respect to K is bounded exponentially

in the depth

dK = max{n | there exist S1 ≺ ... ≺ Sn, ui, vi with uiSi−1vi v Si ∈ R}

We now show that the automaton encoding preserves the semantics of universal

restrictions:

Lemma 4 Let K be a SROIQ knowledge base and I = (4I , ·I) a model of Ω(K).

Further, let R,R1, ..., Rn be (possibly inverse) roles, BR the automaton translation of

R with respect to K as described by Kutz et al. [2006], C a concept, and x and y

elements of 4I such that:

• ∀R.C ∈ K+

• x ∈ (∀R.C)I,

• 〈x, y〉 ∈ RI1 ◦ ... ◦RIn, and

• R1...Rn ∈ L(BR).

Then y ∈ CI.

47



Proof Assume that R1...Rn ∈ L(BR). Then there exists a sequence

p00, p
1
0, ..., p

m0
0 , p01...p

m1
1 , ..., pmn

n

of states of BR, with each mi a positive integer, such that:

• p00 = iR

• pj+1
i ∈ δR(pji , ε)

• p0i+1 ∈ δR(pmi
i , Ri+1)

• pmn
n ∈ FR

Let I = (4I , ·I) be a model of Ω(K), and x and y elements of 4I such that x ∈

(∀R.C)I and 〈x, y〉 ∈ RI1 ◦ ... ◦RIn. Then there exist elements z0, ...zn of 4I such that

z0 = x, zn = y, and 〈zi−1, zi〉 ∈ RIi for each 1 ≤ i ≤ n.

Finally, assume that z0 ∈ (∀R.C)I . We show by induction on i and j that for each

state pji such that 0 ≤ i ≤ n and 0 ≤ j ≤ mi, it is the case that zi ∈ (QC
pji

)I . For the

base case, note that since I is a model of Ω(K), it satisfies the axiom ∀R.C v QC
iR

,

thus z0 ∈ (QC
iR

)I . Substituting p00 for iR, we have z0 ∈ (QC
p00

)I . For induction on j, note

that I must also satisfy QC
p v QC

p′ where p = pji and p′ = pj+1
i , which is an axiom of

Ω(K) since pj+1
i ∈ δR(pji , ε); thus if zi ∈ (QC

p )I for p = pji it is the case that zi ∈ (QC
p′)
I

for p′ = p + ij+1. For induction on i, note that I must satisfy QC
p v ∀Ri+1.Q

C
p′ for

p = pmi
i and p′ = p0i+1, which is an axiom of Ω(K) since p0i+1 ∈ δR(pmi

i , Ri+1). Because

〈zi, zi+1〉 ∈ RIi+1, if zi ∈ (QC
p )I for p = pmi

i , it is thus the case that zi+1 ∈ (QC
p′)
I for

p′ = p0i+1.

We thus conclude by induction that zn ∈ (QC
p )I for p = pmn

n . Since pmn
n ∈ FR, our

model I must satisfy QC
p v C for p = pmn

n , so zn ∈ CI . By substitution, we conclude

that y ∈ CI . �

48



We next demonstrate that our translation preserves the semantics of the original

knowledge base. The proof of this lemma is a natural extension of Theorem 5.2.3 from

Motik [2006].

Lemma 5 Let K be a SROIQ knowledge base. Then Ω(K) is a concept-model-

conservative encoding of K.

Proof Let I be a model of K. We define the interpretation I ′ by extending I to

interpret the fresh atomic concepts QC
p . Let iR and δ be the initial state and transition

function, respectively, of the automaton translation BR of role R with respect to K,

and let ∀R.C be a concept in K+. Then let I ′ be the smallest extension of I such

that

(QC
p′)
I′ = {x | x ∈ (QC

p )I
′

and p′ ∈ δR(p, ε)}∪

{y | ∃x : x ∈ (QC
p )I

′
, 〈x, y〉 ∈ (R′)I

′
, and p′ ∈ δR(p,R′)}∪

(∀R.C)I if p′ = iR

for each concept QC
p′ . Clearly, I ′ and I coincide on (∅, NC , NI). We now show that I ′

is a model of Ω(K).

It is clear from the definition of I ′ that if y ∈ (QC
f )I

′
for f a final state of the

automata BR, then there exist elements x0, ..., xn of 4I′ and roles R1, ...Rn such that

x0 ∈ (∀R.C)I and 〈xn−1, xn〉 ∈ RI
′
n , and R1...Rn ∈ L(BR). By Lemma 1, it is thus

the case that 〈x0, y〉 ∈ RI , and since x0 ∈ (∀R.C)I it is also the case that y ∈ CI .

Thus I ′ satisfies all axioms of the form QC
f v C added in the construction of Ω(K).

Further, I ′ clearly satisfies the additional axioms of Ω(K) of the forms ∀R.C v

QC
iR

, QC
p v ∀R′.QC

p′ , and QC
p v QC

p′ by definition. Finally, I ′ differs from I only in its

interpretation of concepts not occurring in K, so I ′ satisfies all axioms from K. I ′ is

thus a model of Ω(K), and I ′ and I coincide on (∅, NC , NI).

Let I ′ = (4I′ , ·I′) be a model of Ω(K) = (T ′,A,R′). We define the interpretation

I = (4I , ·I) as follows:

49



• 4I = 4I′

• aI = aI
′

for every individual a

• AI = AI
′

for every atomic concept A

• RI = RI
′∪{〈x, y〉 | 〈x, y〉 ∈ RI′1 ◦ ...◦RI

′
n and R1...Rn ∈ L(BR)} for each atomic

role R

Clearly, I ′ and I coincide on (∅, NC , NI). We now show that I is a model of K =

(T ,A,R).

By the definition of I and Lemma 2, I clearly satisfies all complex role inclusions

in R. Further, for each simple role S it is the case that SI = SI
′
. Since Ω(K) contains

all simple role inclusion, role disjointness, and irreflexivity axioms of R, and I ′ is a

model of Ω(K), then I also satisfies all simple role inclusion, role disjointness, and

irreflexivity axioms of R. It is thus the case that I is a model of R.

Let ≺ be a relation on the concepts (+K) such that C ≺ D iff C or nnf(¬C) occur

in D. We next show by induction on ≺ that for every concept C ∈ (+K), it is the

case that CI
′ ⊆ CI . For the base case where C is an atomic concept, a nominal, a

local reflexivity axiom, or a negation of any of these, the claim follows immediately

from the definition of I. For the inductive step, we consider the different forms that

nnf(C) can take:

• For C = D1 u D2, let α be some element of 4I′ such that α ∈ (D1 ∩ D2)
I′ .

Then α ∈ DI
′

1 and α ∈ DI
′

2 . By the inductive hypothesis, it is thus the case

that α ∈ DI1 and α ∈ DI2 , so α ∈ (D1 ∩D2)
I .

• For C = D1tD2, let α be some element of 4I′ such that α ∈ (D1∪D2)
I′ . Then

α ∈ DI′1 or α ∈ DI′2 . By the inductive hypothesis, if α ∈ DI′1 then α ∈ DI1 , and

if α ∈ DI′2 then α ∈ DI2 . In either case, α ∈ (D1 ∪D2)
I .

50



• For C = ∃R.D, let α be some element of 4I′ such that α ∈ (∃R.D)I
′
. Then

there exists some β such that 〈α, β〉 ∈ RI′ and β ∈ DI′ . Then 〈α, β〉 ∈ RI by

the definition of I, and β ∈ DI by the inductive hypothesis, so α ∈ (∃R.D)I .

• For C = ∀R.D, let α be some element of 4I′ such that α ∈ (∀R.D)I
′
. Suppose

there were some element β such that 〈α, β〉 ∈ RI and β 6∈ DI . Then by the

inductive hypothesis, β 6∈ DI
′
, and since α ∈ (∀R.D)I

′
, it must be the case

that 〈α, β〉 6∈ RI
′
. Then there must exist roles R1, ..., Rn such that 〈α, β〉 ∈

RI
′

1 ◦ ... ◦ RI
′
n and R1...Rn ∈ L(BR). But then, by Lemma 4, it is the case that

β ∈ DI′ , which is a contradiction. No such β exists, so α ∈ (∀R.D)I .

• For C = ≥ nR.D, let α be some element of 4I′ such that α ∈ (≥ nR.D)I
′
.

Then there exist elements β1, ..., βn such that 〈α, βi〉 ∈ RI
′

and βi ∈ DI
′

for

1 ≤ i ≤ n. Due to the fact that RI
′ ⊆ RI and the inductive hypothesis, it is

thus the case that 〈α, βi〉 ∈ RI and βi ∈ DI for 1 ≤ i ≤ n, so α ∈ (≥ nR.D)I .

It is thus the case that CI
′ ⊆ CI for each concept C ∈ (+K). The interpretation

I ′ is a model of A and RI
′ ⊆ RI for each role occurring in K, so clearly I satisfies

all concept and role assertions of A. Further, aI = aI
′

for each individual occurring

in K, so I also satisfies all equality and inequality assertions in A, and thus I is a

model of A.

Finally, for each GCI C v D ∈ T , it is the case that C v D ∈ T ′, so CI
′ ∩4I′ \

DI
′

= ∅ and 4I′ ⊆ (¬C tD)I
′
. Since (¬C tD)I

′ ⊆ (¬C tD)I and 4I = 4I′ , it is

the case that 4I ⊆ (¬C tD)I , so I satisfies C v D. We thus have that I is a model

of T , and I is a model of K = (T ,A,R). �

Finally, we describe the complexity of our transformation:

Lemma 6 Let K be a SROIQ knowledge base. Then Ω(K) can be computed in

time exponential in |K|, and |Ω(K)| is exponential in |K|. Further, if all complex role

51



inclusion axioms of K are of the form RR v R, then Ω(K) can be computed in time

polynomial in |K|, and |Ω(K)| is polynomial in |K|.

Proof This lemma is an obvious consequence of Lemma 3, Definition 8, the obser-

vation that dK is bounded by the number of axioms in K, and the observation that

dK = 0 if all complex role inclusion axioms in K are of the form RR v R. �

Such an exponential blowup when converting SROIQ to ALCHOIQ+ is un-

avoidable in the worst case: SROIQ is N2ExpTime-hard while ALCHOIQ+ (a

variant of SHOIQ) is NExpTime-complete [Kazakov, 2008].

As noted in Definition 4, there is no distinction between simple and non-simple

roles in ALCHOIQ+. Hence, in the rest of this chapter we assume that all roles are

simple unless otherwise stated and, without loss of generality, we treat ∃R.B as a

syntactic shortcut for ≥ 1R.B.

5.1.2 Normalization

Before translation into a set of DL-clauses, a knowledge base is first brought into a

normalized form. This is done in order to make all negations explicit, and to ensure

that the resulting DL-clauses are compatible with blocking.

To understand the first issue, consider the axiom ¬A v ¬(∃R.∃R.∃R.B). Convert-

ing this axiom into DL-clauses is not straightforward because of the implicit negations;

for example, the concept A is seemingly negated but, due to the negation implicit in

the implication, A actually occurs positively in the axiom. Therefore, we replace this

axiom with the following equivalent axiom. This makes all negations explicit, so the

result can be easily translated into a DL-clause.

> v A t ∀R.∀R.∀R.¬B  R(x, y1) ∧R(y1, y2) ∧R(y2, y3) ∧B(y3)→ A(x)

(5.1)

52



To understand the second issue, consider the knowledge base K10, consisting of an

ABox A10 and a TBox that corresponds to the set of DL-clauses C10.

A10 = { ¬A(a), B(a) }

C10 = { R(x, y1) ∧R(y1, y2) ∧R(y2, y3) ∧B(y3)→ A(x), B(x)→ ∃R.B(x) }

By applying the rules from Chapter 4, our algorithm constructs on K10 the ABox

shown in Figure 5.2. According to the definition of blocking introduced in Defini-

tion 13,1 c is now blocked by b; furthermore, no rule is applicable to the ABox, so the

algorithm terminates, leading us to believe that K10 is satisfiable. The ABox, however,

does not represent a model of K10: if we expand ∃R.B(c) into R(c, d) and B(d), by the

first DL-clause in C10 we can derive A(a), which then contradicts ¬A(a). This problem

arises because the antecedent of the first DL-clause in C10 checks for a path of three

R-successors, whereas the pairwise blocking condition ensures only that all paths of

length two are fully constructed. Intuitively, the antecedents of each DL-clause should

check for paths that “fit” into the fully-constructed model fragments. We can ensure

this by renaming complex concepts into simpler ones. Thus, we transform the culprit

DL-clause into the following ones, which check only for paths of length one.

> v A t ∀R.¬Q1  R(x, y) ∧Q1(y)→ A(x) (5.2)

> v Q1 t ∀R.¬Q2  R(x, y) ∧Q2(y)→ Q1(x) (5.3)

> v Q2 t ∀R.¬B  R(x, y) ∧B(y)→ Q2(x) (5.4)

The application of these DL-clauses to the ABox shown in Figure 5.2 would addition-

ally derive Q2(a), Q2(b), and Q1(a), so c would not be blocked. The calculus would

then expand ∃R.B(c) and discover a contradiction.

To formalize these ideas, we define a normalized form of DL knowledge bases.

1The version of blocking introduced in Definition 13 differs from the one presented in Section 3.3
in that the concept label LA(s) of an individual s consists only of atomic concepts A such that
A(s) ∈ A.

53



a

B
∃R.B
¬A

b

B
∃R.B

c

B
∃R.B

R R

Figure 5.2: Incorrect Blocking due to Lack of Normalization

Definition 9 (Normalized Form of GCI, TBox, and ABox) A GCI is normal-

ized if it is of the form > v
⊔n
i=1Ci, where each Ci is of the form B, {a}, ∀R.B,

∃R.Self, ¬∃R.Self, ≥ nR.B, or ≤ nR.B, for B a literal concept, R a role, and n a

nonnegative integer.

A TBox T is normalized if each GCI in it is normalized. An ABox A is normalized

if each concept assertion inA contains only an atomic concept, each role assertion inA

contains only an atomic role, and A contains at least one assertion. An ALCHOIQ+

knowledge base K = (R, T ,A) is normalized if T and A are normalized. 4

The following transformation can be used to normalize a knowledge base.

Definition 10 (Normalization) For anALCHOIQ+ knowledge baseK, the knowl-

edge base ∆(K) is computed as shown in Table 5.2. 4

Normalization can be seen as a variant of the well-known structural transformation

[Plaisted and Greenbaum, 1986; Nonnengart and Weidenbach, 2001]. An application

of the structural transformation to (5.1) would replace each complex subconcept with

a positive atomic concept, eventually producing > v A t ∀R.Q1. This axiom cannot

be translated into a Horn DL-clause, whereas (5.1) can; thus, the standard structural

transformation can destroy Horn-ness. To prevent this, we introduce the function

pos(C) (cf. Table 5.2) that returns false if the clausification of C does not require

adding atoms into the consequent of a DL-clause. We then replace an occurrence of

a concept C in a concept D with a negative literal concept ¬QC if pos(C) = false,

54



Table 5.2: The Functions Used in the Normalization

∆(K) = {>(a)} ∪
⋃

α∈R∪A
∆(α) ∪

⋃
C1vC2∈T

∆(> v nnf(¬C1 t C2))

∆(> v C t C ′) = ∆(> v C t αC′) ∪
⋃

1≤i≤n
∆(> v ¬̇αC′ t Ci)

for C ′ of the form C ′ = C1 u . . . u Cn and n ≥ 2

∆(> v C t ∀R.D) = ∆(> v C t ∀R.αD) ∪∆(> v ¬̇αD tD)
∆(> v C t ≥ nR.D) = ∆(> v C t ≥ nR.αD) ∪∆(> v ¬̇αD tD)
∆(> v C t ≤ nR.D) = ∆(> v C t ≤ nR.¬̇α¬̇D) ∪∆(> v ¬̇α¬̇D t ¬̇D)

∆(> v C t ¬{s}) =

{
⊥ if C is empty,
∆(C(s)) otherwise.

∆(D(s)) = {αD(s)} ∪∆(> v ¬̇αD t nnf(D))
∆(R−(s, t)) = {R(t, s)}

∆(β) = {β} for any other axiom β

αC =

{
QC if pos(C) = true
¬QC if pos(C) = false

, where QC is a fresh atomic concept unique for C

pos(>) = false pos(⊥) = false
pos(A) = true pos(¬A) = false

pos({s}) = true pos(¬{s}) = false
pos(∃R.Self) = true pos(¬∃R.Self) = false
pos(C1 u C2) = pos(C1) ∨ pos(C2) pos(C1 t C2) = pos(C1) ∨ pos(C2)
pos(∀R.C1) = pos(C1) pos(≤ nR.C1) =

{
pos(¬̇C1) if n = 0
true otherwisepos(≥ nR.C1) = true

Note: A is an atomic concept, C(i) are arbitrary concepts, C is a possibly empty
disjunction of arbitrary concepts, D is not a literal concept, and a is a fresh individual.
Note that t is commutative, so C ′ in C t C ′ is not necessarily the right-most disjunct.

and with a positive literal concept QC if pos(C) = true. Special care must be taken

when replacing a concept D in a concept ≤ nR.D: since D occurs in ≤ nR.D under

an implicit negation, we replace D with ¬̇α¬̇D in order to preserve Horn-ness. On a

Horn knowledge base K, normalization performs the same replacements as the one

presented by Hustadt et al. [2005], so ∆(K) is a Horn knowledge base as well.

Lemma 7 The following properties hold for each ALCHOIQ+ knowledge base K

and the corresponding knowledge base ∆(K):

• ∆(K) is a model-conservative encoding of K;

55



• ∆(K) is normalized; and

• ∆(K) can be computed in time polynomial in |K|.

Proof (Sketch) Since our transformation can be seen a syntactic variant of the struc-

tural transformation, the proof that all models of ∆(K) coincide with those of K on

symbols which appear in K is analogous to the proofs given by Plaisted and Green-

baum [1986] and Nonnengart and Weidenbach [2001], so we omit it. For the second

claim, note that ∆ essentially rewrites each GCI into a form > v
⊔n
i=1Ci and then

keeps replacing nested subconcepts of Ci until the GCI becomes normalized; it adds

>(a) to the ABox so that the ABox is not empty; and it replaces all inverse role

assertions with equivalent assertions on the atomic roles. Thus, ∆(K) is normalized.

Finally, each occurrence of a concept in K can be replaced with a new atomic con-

cept at most once, and all necessary syntactic transformations can be performed in

polynomial time, so ∆(K) can be computed in polynomial time. �

5.1.3 Translation into DL-Clauses

We now introduce the notion of HT-clauses—syntactically restricted DL-clauses on

which our hypertableau calculus is guaranteed to terminate. In the rest of this paper,

we often use the function ar, which, given a role R and variables or constants s and t,

returns an atom that is semantically equivalent to R(s, t) but that contains an atomic

role; that is,

ar(R, s, t) =

{
R(s, t) if R is an atomic role
S(t, s) if R is an inverse role and R = S−

.

Definition 11 (HT-Clause) We assume that, for each individual a, the set of

atomic concepts NC contains a unique nominal guard concept which we denote as

Oa; furthermore, we assume that nominal guard concepts do not occur in any in-

put knowledge base. The intuition behind nominal guard concepts is explained in

Section 4.4.

56



An annotated equality is an atom of the form s ≈ t@u
≤nS.B, where s, t, and

u are constants or variables, n is a nonnegative integer, S is a role, and B is a

literal concept; the part @u
≤nS.B of the atom is called the annotation. This atom is

semantically equivalent to s ≈ t. As explained in Section 3.5, annotations are only

used to ensure termination of the hypertableau phase.

An HT-clause is a DL-clause r of the following form, for m ≥ 0 and n ≥ 0:

U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn (5.5)

Furthermore, it must be possible to separate the variables into a center variable x, a

set of branch variables yi, and a set of nominal variables zj such that the following

properties hold, for A an atomic concept, B an atomic concept which is not a nominal

guard concept, Oa a nominal guard concept, R an atomic role, and S a role.

1. Each atom in the antecedent of r is of the form A(x), R(x, x), R(x, yi), R(yi, x),

A(yi), or A(zj).

2. Each atom in the consequent of r is of the form B(x),≥ hS.B(x), B(yi), R(x, x),

R(x, yi), R(yi, x), R(x, zj), R(zj, x), x ≈ zj, or yi ≈ yj @x
≤hS.B.

3. Each yi occurs in the antecedent of r in an atom of the form R(x, yi) or R(yi, x).

4. Each zj occurs in the antecedent of r in an atom of the form Oa(zj).

5. Each equality yi ≈ yj @x
≤hS.A in the consequent of r occurs in a subclause of r

of the form (5.6) where y1, . . . , yh+1 are branch variables such that no yk with

1 ≤ k ≤ h+ 1 occurs elsewhere in r.

. . .

h+1∧
k=1

[ar(S, x, yk) ∧ A(yk)] . . .→ . . .
∨

1≤k<`≤h+1

yk ≈ y` @x
≤hS.A . . . (5.6)

57



6. Each equality yi ≈ yj @x
≤hS.¬A in the consequent of r occurs in a subclause of r

of the form (5.7) where y1, . . . , yh+1 are branch variables such that no yk with

1 ≤ k ≤ h+ 1 occurs elsewhere in r.

. . .
h+1∧
k=1

ar(S, x, yk) . . .→ . . .

h+1∨
k=1

A(yk) ∨
∨

1≤k<`≤h+1

yk ≈ y` @x
≤hS.¬A . . . (5.7)

4

HT-clauses are more general than what is strictly needed to capture ALCHOIQ+

knowledge bases. For example, HT-clauses of the form R(x, y) ∧ A(y)→ S(x, y) ex-

press a form of relativized role inclusions, and safe role expressions can be captured

by HT-clauses of the form R(x, y) ∧ S(y, x)→ U(x, y) ∨ T (y, x) [Tobies, 2001].

We now show how to transform a normalized ALCHOIQ+ knowledge base into

a set of HT-clauses.

Definition 12 (Clausification) The clausification of a normalized ALCHOIQ+

knowledge base K = (R, T ,A) is the pair Ξ(K) = (ΞT R(K),ΞA(K)) in which ΞT R(K)

is a set of DL-clauses and ΞA(K) is an ABox, both obtained as shown in Table 5.3,

where each Q¬A is a fresh atomic concept not occurring in K. 4

Lemma 8 Let K = (R, T ,A) be a normalized ALCHIQ knowledge base. Then the

clausification Ξ(K) = (ΞT R(K),ΞA(K)) is a model-conservative encoding of K, and

ΞT R(K) contains only HT-clauses.

Proof We begin by showing that ΞT R(KB) contains only HT-clauses. By inspecting

Table 5.3, it is easy to see that ΞR(R) contains only clauses with simple role atoms

containing a center variable and at most one branch variable, which also occurs in

the antecedent of the clause; every clause r in ΞR(R) is clearly an HT-clause.

For ΞT (T ), the lhs and rhs functions are used to construct the antecedent and

consequent of each clause, respectively. We consider each of the properties of DL-

clauses given by Definition 11.

58



Table 5.3: Translation of a Normalized Knowledge Base to HT-Clauses

ΞT (T ) = {
n∧
i=1

lhs(Ci)→
n∨
i=1

rhs(Ci) | for each > v
n⊔
i=1

Ci in T }

ΞR(R) = {ar(R, x, y)→ ar(S, x, y) | for each R v S in R} ∪
{ar(S1, x, y) ∧ ar(S2, x, y)→ ⊥ | for each Dis(S1, S2) ∈ R} ∪
{> → ar(R, x, x) | for each Ref(R) ∈ R} ∪
{ar(S, x, x)→ ⊥ | for each Irr(S) ∈ R} ∪
{ar(R, x, y)→ ar(R, y, x) | for each Sym(R) ∈ R} ∪
{ar(S, x, y) ∧ ar(S, y, x)→ ⊥ | for each Asy(S) ∈ R}

ΞA(K) = {R(a, b) | R(a, b) ∈ A} ∪
{A(a) | for each atomic concept A such that A(a) ∈ A} ∪
{Q¬A(a) | for each atomic concept A such that ¬A(a) ∈ A} ∪
{Oa(a) | for each {a} occurring in K}

ΞT R(K) = ΞT (T ) ∪ ΞR(R) ∪ {A(x) ∧Q¬A(x)→ ⊥ |
for each Q¬A occurring in ΞT (T ) or ΞA(K)}

Note: Whenever lhs(Ci) or rhs(Ci) is undefined, it is omitted in the HT-clause.
C lhs(C) rhs(C)
A A(x)

¬A A(x)

{a} Oa(zC) x ≈ zC

≥ nR.A ≥ nR.A(x)

≥ nR.¬A ≥ nR.Q¬A(x)

∃R.Self ar(R, x, x)

¬∃R.Self ar(R, x, x)

∀R.A ar(R, x, yC) A(yC)

∀R.¬A ar(R, x, yC) ∧ A(yC)

≤ nR.A
n+1∧
i=1

[ar(R, x, yiC) ∧ A(yiC)]
∨

1≤i<j≤n+1

yiC ≈ yjC @x
≤nR.A

≤ nR.¬A
n+1∧
i=1

ar(R, x, yiC)
n+1∨
i=1

A(yiC) ∨
∨

1≤i<j≤n+1

yiC ≈ yjC @x
≤nR.¬A

Note: Each y
(i)
C and zC is a fresh variable unique for C (and i).

59



• The lhs and rhs functions produce only atoms conforming to conditions 1 and

2 of Definition 11.

• In the three cases in which rhs(C) produces a branch variable y, the function

lhs(C) also produces a role atom ar(R, x, y), so each clause conforms to condition

3 of Definition 11.

• A nominal variable z is introduced only by applying rhs to a concept of the form

{a}. In this case, lhs({a}) = Oa(z), so each clause conforms to condition 4 of

Definition 11.

• An equality yi ≈ yj @x
≤hS.A is introduced only by applying rhs to a concept of

the form ≤ nR.A. In this case, lhs(≤ nR.A) and rhs(≤ nR.A) form a subclause

of form (5.6), so each clause conforms to condition 5 of Definition 11.

• An equality yi ≈ yj @x
≤hS.¬A is introduced only by applying rhs to a concept

of the form ≤ nR.¬A. In this case, lhs(≤ nR.¬A) and rhs(≤ nR.¬A) form a

subclause of form (5.7), so each clause conforms to condition 6 of Definition 11.

We next show that Ξ(K) is a model-conservative encoding of K.

The following equivalences between DL concepts and first-order formulae are well

known [Borgida, 1996]:

∀R.B(x) ≡ ∀y : ¬R(x, y) ∨B(y)

≤ nR.B(x) ≡ ∀y1, . . . , yn+1 :
∧

1≤i≤n+1

[R(x, yi) ∧B(yi)]→
∨

1≤i<j≤n+1

yi ≈ yj

{a}(x) ≡ x ≈ a

Let Ξ′T R(K) be the set of HT-clauses defined just like ΞT R(K), but with the difference

that lhs({a}) = > and rhs({a}) = x ≈ a. Then, (Ξ′T R(K),ΞA(K)) is obtained from K

60



by replacing concepts of the form ∀R.B, ≤ nR.B and {a} with the equivalent first-

order formulae, making the semantics of role axioms explicit, and introducing the

atomic concept names Q¬A in place of the literals ¬A. The clausified knowledge base

(Ξ′T R(K),ΞA(K)) is clearly a model-conservative encoding of K. We now show that

(ΞT R(K),ΞA(K)) is a model-conservative encoding of (Ξ′T R(K),ΞA(K)).

(⇒) Each model I ′ of (Ξ′T R(K),ΞA(K)) is extended to a model I of (ΞT R(K),ΞA(K))

by setting OIa = {aI′} for each nominal guard concept Oa.

(⇐) Each model I of Ξ(K) is a model of (Ξ′T R(K),ΞA(K)): for each γ ∈ Ξ′T R(K),

we have δ ∈ ΞT R(K) and Oak(ak) ∈ ΞA(K), where γ and δ are of the form shown

below.

γ =
∧

Ui →
∨

Vj ∨
n∨
k=1

xk ≈ ak

δ =
∧

Ui ∧
n∧
k=1

Oak(z{ak})→
∨

Vj ∨
n∨
k=1

xk ≈ z{ak}

Now if the disjunction
∨n
k=1 xk ≈ ak in some γ were not true in I for some values of

x1, . . . , xn, then clearly δ would not be true in I for the same values of x1, . . . , xn. �

5.2 The Hypertableau Calculus for HT-Clauses

We now present the hypertableau calculus for deciding the satisfiability of an ABox

A and a set of HT-clauses C. As explained in Chapter 4, our algorithm uses several

types of individuals. Each individual is either root or blockable as summarized next;

when we refer simply to an individual, we mean either a root or a blockable one.

• Root individuals are those that either occur in the input ABox, or are introduced

by the NI -rule. Their important characteristic is that they can be connected in

arbitrary, and not just tree-like, ways.

– Root individuals that occur in the input ABox are called named individ-

uals.

61



– Root individuals that are introduced by the NI -rule are identified by finite

strings of the form a.γ1. . . . .γn where a is a named individual, each γ` is

of the form 〈R.B.i〉, and n ≥ 0. Root individuals introduced by applying

the NI -rule to an assertion s ≈ t@u
≤nR.B are all of the form u.〈R.B.i〉 with

1 ≤ i ≤ n.

• Blockable individuals are introduced by the ≥-rule, and make up the tree-like

parts of a model. The set of blockable individuals is disjoint from the set of root

individuals. Blockable individuals are identified by finite strings of the form

s.i1.i2. . . . .in where s is a root individual, each i` is an integer, and n ≥ 1. This

string representation naturally induces the parent–child relationship between

individuals; for example, s.2 is the second child of the individual s, which can

be either blockable or root.

We now introduce our algorithm.

Definition 13 (Hypertableau Algorithm)

Individuals. Given a set of named individuals NI , the set of root individuals

NO is the smallest set such that NI ⊆ NO and, if x ∈ NO, then x.〈R,B, i〉 ∈ NO for

each role R, literal concept B, and positive integer i. The set of all individuals NA is

the smallest set such that NO ⊆ NA and, if x ∈ NA, then x.i ∈ NA for each positive

integer i. The individuals in NA \NO are blockable individuals. A blockable individual

x.i is a successor of x, and x is a predecessor of x.i. Descendant and ancestor are the

transitive closures of successor and predecessor, respectively.

ABoxes. The hypertableau algorithm operates on ABoxes that are obtained by

extending the standard definition from Section 2.1 as follows.

• In addition to assertions from Section 2.1, an ABox can contain annotated

equality assertions (as given by Definition 11) and a special assertion ⊥ that is

62



false in all interpretations. Furthermore, assertions can refer to the individuals

from NA and not only from NI .

• Each (in)equality s ≈ t (s 6≈ t) also stands for the symmetric (in)equality t ≈ s

(t 6≈ s). The same is true for annotated equalities.

• An ABox A can contain renamings of the form a 7→ b where a and b are root

individuals. Let 7→∗ be the reflexive-transitive closure of 7→ in A. An individual

b is the canonical name of a root individual a in A, written b = ‖a‖A, if b is

the only individual such that both a 7→∗ b and there exists no individual c 6= b

such that b 7→∗ c (i.e. b is the tail of every maximal 7→ path originating at

a). As we show in Lemma 9, the derivation rules of our calculus ensure that

7→ is a functional and acyclic relation, so a unique individual b satisfying this

definition exists for every a. In order to make this definition complete, however,

we arbitrarily define a to be its own canonical name in the case that no individual

b meeting the above definition exists.

An input ABox is an ABox containing only named individuals, no annotated

equalities, and no renamings, and in which all concepts and all roles are atomic.

Satisfaction of such ABoxes in an interpretation is obtained by a straightforward

generalization of the definitions in Section 2.1: all individuals are interpreted as ele-

ments of the interpretation domain 4I , and I |= a 7→ b iff aI = bI .

Pairwise Anywhere Blocking. The labels of an individual s and of an individual

pair 〈s, t〉 in an ABox A are defined as follows:

LA(s) = { A | A(s) ∈ A and A is an atomic concept }

LA(s, t) = { R | R(s, t) ∈ A }

Let ≺ be a strict ordering (i.e., a transitive and irreflexive relation) on NA contain-

ing the ancestor relation—that is, if s′ is an ancestor of s, then s′ ≺ s. By induction

on ≺, we assign to each individual s in A a status as follows:

63



• a blockable individual s is directly blocked by a blockable individual t if and only

if the following conditions are satisfied, for s′ and t′ the predecessors of s and t,

respectively:

– s′ and t′ are blockable individuals,

– t is not blocked,

– t ≺ s,

– LA(s) = LA(t) and LA(s′) = LA(t′), and

– LA(s, s′) = LA(t, t′) and LA(s′, s) = LA(t′, t);

• s is indirectly blocked iff it has a predecessor that is blocked; and

• s is blocked iff it is either directly or indirectly blocked.

Pruning. The ABox pruneA(s) is obtained from A by removing all assertions

containing a descendant of s.

Merging. The ABox mergeA(s→ t) is obtained from pruneA(s) by replacing the

individual s with the individual t in all assertions and their annotations (but not in

renamings) and, if both s and t are root individuals, adding the renaming s 7→ t.

Derivation Rules. Table 5.4 specifies derivation rules that, given an ABox A

and a set of HT-clauses C, derive one or more ABoxes A1, . . . ,An. In the Hyp-rule, σ

is a mapping from the set of variables NV to the individuals occurring in the assertions

of A, and σ(U) is the result of replacing each variable x in the atom U with σ(x).

Rule Precedence. The ≈-rule can be applied to a (possibly annotated) equality

s ≈ t in an ABox A only if A does not contain an equality s ≈ t@u
≤nR.B to which the

NI -rule is applicable (with the same s and t).

Clash. An ABox A contains a clash iff ⊥ ∈ A; otherwise, A is clash-free.

64



Derivation. For a set of HT-clauses C and an input ABox A, a derivation is a

pair (T, λ) where T is a finitely branching tree and λ is a function that labels the

nodes of T with ABoxes such that the following properties hold for each node t of T :

• λ(t) = A if t is the root of T ;

• t is a leaf of T if ⊥ ∈ λ(t) or no derivation rule is applicable to λ(t) and C;

• in all other cases, t has children t1, . . . , tn such that λ(t1), . . . , λ(tn) are exactly

the results of applying one (arbitrarily chosen, but respecting the rule prece-

dence) applicable rule to λ(t) and C. 4

We stress several important aspects of Definition 13.

As described in Section 3.5.3 and Section 3.5.4, the NI -rule promotes blockable

individuals into root individuals, and annotated equalities carry information about

how individuals should be promoted. If the preconditions of the NI -rule are satisfied

for an annotated equality s ≈ t@u
≤nR.B, then the rule must be applied even if s =

t; hence, such an equality plays a role in a derivation even though it is a logical

tautology. Furthermore, even though the NI -rule is not applied to s ≈ t@u
≤nR.B

if u is a blockable individual, the equality cannot be eagerly simplified into s ≈ t

because u can subsequently be merged into a root individual so the annotation might

become important. Finally, if C has been obtained by clausification of a DL knowledge

base that does not use nominals, inverse roles, and number restrictions, then the

precondition of the NI -rule will never be satisfied, so we need not keep track of

annotations at all.

Renamings are used to keep track of root individuals that are merged into other

root individuals, which is necessary to make the NI -rule sound. For example, if a root

individual a.〈R,B, 2〉 is merged into a named individual b, then the NI -rule must use

b instead of a.〈R,B, 2〉 in all future inferences.

65



Table 5.4: Derivation Rules of the Hypertableau Calculus

Hyp-rule

If 1. r ∈ C, where r = U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn, and
2. a mapping σ from the variables in r to the individuals of A exists

such that
2.1 there is no variable x in r such that σ(x) is indirectly blocked,
2.2 σ(Ui) ∈ A for each 1 ≤ i ≤ m, and
2.3 σ(Vj) 6∈ A for each 1 ≤ j ≤ n,

then A1 := A ∪ {⊥} if n = 0;
Aj := A ∪ {σ(Vj)} for 1 ≤ j ≤ n otherwise.

≥-rule

If 1. ≥ nR.B(s) ∈ A,
2. s is not blocked in A, and
3. A does not contain individuals u1, . . . , un such that
3.1 {ar(R, s, ui), B(ui) | 1 ≤ i ≤ n} ∪ {ui 6≈ uj | 1 ≤ i < j ≤ n} ⊆ A, and
3.2 ui is not indirectly blocked in A for each 1 ≤ i ≤ n

then A1 := A ∪ {ar(R, s, ti), B(ti) | 1 ≤ i ≤ n} ∪ {ti 6≈ tj | 1 ≤ i < j ≤ n}
where t1, . . . , tn are fresh distinct (blockable) successors of s.

≈-rule

If 1. s ≈ t ∈ A (the equality can possibly be annotated),
2. s 6= t, and
3. neither s nor t is indirectly blocked

then A1 := mergeA(s→ t) if t is a named individual, or t is a root individual
and s is not a named individual, or s is a descendant of t;
A1 := mergeA(t→ s) otherwise.

⊥-rule
If s 6≈ s ∈ A where s is not indirectly blocked
then A1 := A ∪ {⊥}.

NI -rule

If 1. s ≈ t@u
≤nR.B ∈ A (the symmetry of ≈ applies as usual),

2. u is a root individual,
3. s is a blockable individual that is not a successor of u,
4. t is a blockable individual, and
5. neither s nor t is indirectly blocked

then Ai := mergeA(s→ ‖u.〈R,B, i〉‖A) for each 1 ≤ i ≤ n.

While we defer the formal impact of blocking on model construction to Defini-

tion 15, the intuition is that assertions containing at least one successor of a blocked

individual are not used to construct a model from an ABox labeling a leaf in a deriva-

tion. The ≥-rule is thus inapplicable to all blocked individuals; this is required to en-

sure termination. Since assertions containing at least one indirectly blocked individual

are not relevant to model construction, derivation rules (other than the ⊥-rule2) are

2While most implementations will apply the ⊥-rule with high precedence, which would prevent its
application to indirectly blocked individuals, our calculus does allow clashes to result from assertions
of the form s 6≈ s where s is indirectly blocked. In such cases further rule applications in other parts

66



applicable only to individuals that are either directly blocked or not blocked, as this

is sufficient for completeness. Since all rules are sound, however, one may choose to

disregard this restriction if that makes implementation easier. We also note that it

is not uncommon for individuals blocked at node t in a derivation tree to become

unblocked in a descendant of t; the distinction between indirectly blocked individuals

and pruning is thus significant. In fact, we define the ordering ≺ used to compute

blocking only with respect to a particular ABox, which allows for the possibility of

different orderings at different nodes in the derivation tree.

We now prove some properties of our calculus that will be useful in showing how a

derivation tree can be explored to determine the consistency of a knowledge base, and

to construct a model of the knowledge base if one exists. We begin by introducing the

notion of HT-ABoxes, which formalizes the idea of forest-shaped ABoxes introduced

in Section 3.3.

Definition 14 (HT-ABoxes) An ABox A is an HT-ABox if it satisfies the follow-

ing conditions, for R an atomic role, S a role, B an atomic concept which is not a

nominal guard concept, Oa a nominal guard concept, s, t, u ∈ NA, a ∈ NO, b ∈ NI ,

and i, j integers.

1. Each role assertion in A is of the form R(a, s), R(s, a), R(s, s.i), R(s.i, s), or

R(s, s).

2. Each equality in A is either of the form s ≈ t@a
≤nR.B with s a blockable individ-

ual that is not a successor of a and t a blockable individual, or it is a possibly

annotated equality of the form s.i ≈ s.j, s.i ≈ s, s.i.j ≈ s, s ≈ s, or s ≈ a. (The

symmetry of ≈ applies in all these cases as usual.)

3. Each concept assertion in A is of the form B(s), ≥ nS.B(s), or Oa(b).

of the ABox would always eventually result in a clash, so applying the ⊥-rule even to indirectly
blocked individuals is a (minor) optimization.

67



4. If A contains s ≈ t@u
≤nR.B, then A also contains ar(R, u, s) and ar(R, u, t).

5. If A contains a blockable individual s.i in some assertion, then A must contain

an assertion of the form R(s, s.i) or R(s.i, s).

6. A contains at least one assertion.

7. The relation 7→ in A is acyclic, A contains at most one renaming a 7→ b for an

individual a, and, if A contains a 7→ b, then a does not occur in any assertion

in A. 4

Clearly, each input ABox is an HT-ABox. We now prove that, given an HT-ABox,

our calculus produces only HT-ABoxes.

Lemma 9 (HT-Preservation) For C a set of HT-clauses and A an HT-ABox, each

ABox A′ obtained by applying a derivation rule to C and A is an HT-ABox.

Proof Let C, A, and A′ be as stated in the lemma. We now analyze each derivation

rule from Table 5.4 and show thatA′ satisfies the remaining conditions of HT-ABoxes.

(Hyp-rule) Consider an application of the Hyp-rule to an HT-clause r of type (5.5)

with a mapping σ, deriving an assertion σ(V ).

Assume that V is of the form yi ≈ yj @x
≤k R.B, so σ(V ) is of the form s ≈ t@u

≤k R.B.

By Definition 11, the antecedent of r then contains atoms of the form ar(R, x, yi) and

ar(R, x, yj) so, by the precondition of the Hyp-rule, A contains assertions ar(R, u, s)

and ar(R, u, t). If u is a root individual and either s or t is a blockable individual that

is not a successor of u, then σ(V ) clearly satisfies Property (2) of HT-ABoxes. Other-

wise, since A satisfies Property (1) of HT-ABoxes, we have the possibilities shown in

Table 5.5, for v a blockable individual, and a and b root individuals. For brevity, we

omit the symmetric combinations where the roles of ar(R, u, s) and ar(R, u, t) are ex-

changed. Clearly, σ(V ) satisfies Property (2) of HT-ABoxes. Finally, σ(V ) obviously

satisfies Property (4) of HT-ABoxes.

68



Table 5.5: Cases in an Application of the Hyp-Rule to Role Assertions

ar(R, u, s) ar(R, u, t) s ≈ t@u
≤k R.B

ar(R, v, a) ar(R, v, b) a ≈ b@v
≤k R.B

ar(R, v, a) ar(R, v, v.n) a ≈ v.n@v
≤k R.B

ar(R, v, a) ar(R, v, v) a ≈ v@v
≤k R.B

ar(R, v.n, a) ar(R, v.n, v) a ≈ v@v.n
≤k R.B

ar(R, v, v.m) ar(R, v, v.n) v.m ≈ v.n@v
≤k R.B

ar(R, v, v.m) ar(R, v, v) v.m ≈ v@v
≤k R.B

ar(R, v.n, v.n.m) ar(R, v.n, v) v.n.m ≈ v@v.n
≤k R.B

ar(R, v, v) ar(R, v, v) v ≈ v@v
≤k R.B

ar(R, v.n, v.n) ar(R, v.n, v) v.n ≈ v@v.n
≤k R.B

ar(R, v.n, v) ar(R, v.n, v) v ≈ v@v.n
≤k R.B

Assume that V is of the form x ≈ zj, so σ(V ) is of the form s ≈ t. By Definition 11,

the antecedent of r then contains an atom Oa(zj), so either Oa(s) ∈ A or Oa(t) ∈ A.

By Property (3) of HT-ABoxes, either s or t is a named individual, so σ(V ) satisfies

Property (2) of HT-ABoxes.

Assume that V is of the form R(x, x). Then, σ(V ) is of the form R(s, s), and it

satisfies Property (1) of HT-ABoxes.

Assume that V is of the form R(x, yi) or R(yi, x), so σ(V ) is of the form R(s, t).

By Definition 11, the antecedent of r then contains an atom of the form S(x, yi) or

S(yi, x), and either S(s, t) ∈ A or S(t, s) ∈ A; these assertions satisfy Property (1) of

HT-ABoxes, so R(s, t) satisfies it as well.

Assume that V is of the form R(x, zj) or R(zj, x), so σ(V ) is of the form R(s, t).

By Definition 11, the antecedent of r then contains an atom of the form Oa(zj) for

Oa a nominal guard concept, and either Oa(s) ∈ A or Oa(t) ∈ A; by Property (3) of

HT-ABoxes, either s or t is a named individual, so R(s, t) satisfies Property (1) of

HT-ABoxes.

Assume that V is of the form B(x), ≥ nS.B(x), or B(yi), so σ(V ) is of the form

B(s) or ≥ nS.B(s). By Definition 11, B is a literal but not a nominal guard concept,

69



so σ(V ) satisfies Property (3) of HT-ABoxes.

(≥-rule) Consider an application of the ≥-rule to an assertion ≥ nR.B(s). By

Property (3) of HT-ABoxes, B is not a nominal guard concept, so all assertions

B(ti) introduced by the rule satisfy Property (3) of HT-ABoxes. Furthermore, all

ti introduced by the rule are fresh blockable successors of s, and all role assertions

introduced by the rule are of the form R(s, ti) or R(ti, s), so they satisfy Properties

(1) and (5) of HT-ABoxes. The inequalities introduced by the rule trivially satisfy

the properties of HT-ABoxes.

(≈-rule) Consider an application of the ≈-rule to a possibly annotated equality

s ≈ t, where s is merged into t (the annotation of the equality plays no role here).

By the conditions on the 7→ relation of A, the ABox A contains no renaming for s or

t, so the renaming s 7→ t is the only renaming for s in A′, and adding this renaming

to A does not introduce a cycle in 7→. Merging replaces all occurrences of s in A, so

no assertion of A′ contains s. Hence, the 7→ relation in A′ satisfies Property (7) of

HT-ABoxes.

The NI -rule is not applicable to s ≈ t by the rule precedence, so, by the precondi-

tions of the NI -rule and Property (2) of HT-ABoxes, s ≈ t can be of the form v ≈ a,

v.i ≈ v.j, v.i ≈ v, or v.i.j ≈ v for a ∈ NO and v ∈ NA; we denote this property with

(*). Since pruning and replacements are applied to all assertions of A uniformly, A′

clearly satisfies Property (4) of HT-ABoxes. Furthermore, pruning removes all suc-

cessors of s, so A′ satisfies Property (5) of HT-ABoxes. We next consider the types

of assertions of A that change when s is merged into t.

Consider a role assertion R(s, u) ∈ A that is changed into R(t, u) ∈ A′. If either

t or u is a root individual, then R(t, u) clearly satisfies Property (1) of HT-ABoxes,

so assume that t and u are both blockable individuals. Then, u is not a successor

of s, since the ≈-rule prunes all assertions that contain a descendant of the merged

individual. But then, by (*) and since R(s, u) satisfies Property (1) of HT-ABoxes,

70



Table 5.6: Cases in an Application of the ≈-Rule to Role Assertions

R(s, u) s ≈ t R(t, u)
R(v.i, v) v.i ≈ v.j R(v.j, v)
R(v.i, v) v.i ≈ v R(v, v)
R(t.j.i, t.j) t.j.i ≈ t R(t, t.j)
R(v.i, v.i) v.i ≈ v.j R(v.j, v.j)
R(v.i, v.i) v.i ≈ v R(v, v)
R(t.j.i, t.j.i) t.j.i ≈ t R(t, t)

we have the possibilities shown in Table 5.6. The cases when R(u, s) ∈ A is changed

into R(u, t) ∈ A′ by merging are analogous.

We now consider the form of equalities that can be derived from other equalities via

merging. Since pruning and replacements are applied to all assertions of A uniformly,

A′ clearly satisfies Property (4) of HT-ABoxes. An equality u ≈ v@s
≤nR.C can be

changed into u ≈ v@t
≤nR.C , but the resulting equality always satisfies Property (2)

of HT-ABoxes. Furthermore, for a a root individual, s ≈ u@a
≤nR.C can be changed

into t ≈ u@a
≤nR.C , and s ≈ a can be changed into t ≈ a; however, in both cases,

the resulting equality satisfies Property (2) of HT-ABoxes. For the remaining cases,

assume that a possibly annotated equality s ≈ u is changed into a possibly annotated

equality t ≈ u. If s is a root individual, then t is a root individual as well (the ≈-rule

never merges a root individual into a blockable one), so t ≈ u satisfies Property (2)

of HT-ABoxes. Assume that s is a blockable individual. Since the ≈-rule prunes all

assertions that contain a descendant of the merged individual, u is not a successor of

s. By (*), Property (2) of HT-ABoxes, and the fact that the NI -rule is not applicable

to A, we have the possibilities shown in Table 5.7. In all cases, the resulting assertion

satisfies Property (2) of HT-ABoxes. Furthermore, replacing s with t in s ≈ t ∈ A

results in t ≈ t ∈ A′, so A′ satisfies Property (6) of HT-ABoxes.

Consider an assertion C(s) ∈ A that is changed into C(t) ∈ A′. The only nontrivial

case is when C is a nominal guard concept Oa. By Property (3) of HT-ABoxes, s is

71



Table 5.7: Cases in an Application of the ≈-Rule to Equalities

s ≈ u s ≈ t t ≈ u
v.i ≈ v.k v.i ≈ v.j v.j ≈ v.k
v.i ≈ v v.i ≈ v.j v.j ≈ v
u.k.i ≈ u u.k.i ≈ u.k.j u.k.j ≈ u
v.i ≈ v.k v.i ≈ v v ≈ v.k
v.i ≈ v v.i ≈ v v ≈ v
u.k.i ≈ u u.k.i ≈ u.k u.k ≈ u
t.j.i ≈ t.j.k t.j.i ≈ t t ≈ t.j.k
t.j.i ≈ t.j t.j.i ≈ t t ≈ t.j
t.j.i ≈ t t.j.i ≈ t t ≈ t

then a named individual. The ≈-rule replaces named individuals only with other

named individuals, so t is a named individual as well. Thus, C(t) satisfies Property

(3) of HT-ABoxes.

(NI -rule) Consider an application of the NI -rule to an equality s ≈ t@u
≤nR.B that

merges s into a root individual ‖u.〈R,B, i〉‖A. The individual s is blockable, so no

renaming is added to A and the 7→ relation in A′ satisfies Property (7) of HT-ABoxes.

Since s is replaced by a root individual in role and equality assertions, all resulting

assertions satisfy Properties (1) and (2) of HT-ABoxes. Since s is not a named indi-

vidual, no assertion involving a nominal guard concept is affected by merging, so A′

satisfies Property (3). Since pruning and replacements are applied to all assertions

of A uniformly, A′ clearly satisfies Property (4) of HT-ABoxes. Pruning removes all

successors of s, so A′ satisfies Property (5) of HT-ABoxes. Finally, A′ is clearly not

empty, so it satisfies Property (6). �

We next prove soundness and completeness of our calculus. We use these notions as

is customary in resolution-based theorem proving: a calculus is sound if its derivation

rules preserve satisfiability of a theory, and it is complete if, whenever the calculus

terminates without detecting a contradiction, the theory is indeed satisfiable.

72



Lemma 10 (Soundness) Let C be a set of HT-clauses and A an input ABox such

that I is a model of (C,A). Then, each derivation for C and A contains a branch such

that for each node t on the branch there exists a model I ′ of (C, λ(t)) which coincides

with I on (NR, NC , NN), where NN is the set of named individuals.

Proof We say that a model I of an ABoxA0 is NI-compatible withA0 if the following

conditions are satisfied:

• For each root individual a occurring in A0, each concept ≤ nR.B, and each

α ∈ 4I such that aI ∈ (≤ nR.B)I , 〈aI , α〉 ∈ RI , and α ∈ BI , we have that

α = (a.〈R,B, i〉)I for some 1 ≤ i ≤ n.

• If s ≈ t@u
≤nR.B ∈ A0, then we have 〈uI , sI〉 ∈ RI , 〈uI , tI〉 ∈ RI , sI ∈ BI , tI ∈ BI ,

and uI ∈ (≤ nR.B)I .

Intuitively, the first condition ensures that each root individual a.〈R,B, i〉 is in-

terpreted as an appropriate “neighbor” of aI , and the second condition ensures that

u, s, and t are interpreted in I in accordance with the annotation.

To prove this lemma, we first show the following property (*): if there exists a

model I of (C,A0) that is NI -compatible withA0 andA1, . . . ,An are ABoxes obtained

by applying a derivation rule to C and A0, then there exists a model I ′ of (C,Ai) that

coincides with I on (NR, NC , NN) and is NI -compatible with Ai, for some 1 ≤ i ≤ n.

Let I be a model of (C,A0) that is NI -compatible with A0, and consider all possible

derivation rules that can derive A1, . . . ,An from A0 and C.

(Hyp-rule) Consider an application of the Hyp-rule to an HT-clause r of the form

(5.5). Since σ(Ui) ∈ A0, we have I |= σ(Ui) for all 1 ≤ i ≤ m. But then, I |= σ(Vj)

for some 1 ≤ j ≤ n. Since Aj := A0 ∪ {σ(Vj)}, we have I |= (C,Aj).

If I |= σ(Vj) for some atom Vj not of the form ψ = yk ≈ y` @x
≤hR.B, then I is clearly

NI -compatible with Aj. Assume then that I |= σ(Vj) for Vj of the form ψ. Consid-

erlearly 〈σ(x)I , σ(yk)
I〉 ∈ RI , 〈σ(x)I , σ(y`)

I〉 ∈ RI , σ(yk)
I ∈ BI , and σ(y`)

I ∈ BI by

73



properties 5 and 6 of HT-clauses and the fact that I |= σ(Ui) for each 1 ≤ i ≤ m and

I 6|= σ(Vk) for each k 6= j such that 1 ≤ k ≤ n.

Assume that I is not NI -compatible with Aj for each 1 ≤ j ≤ n. From the above,

I 6|= σ(Vj) for each Vj not of the form ψ, and σ(x)I 6∈ (≤ hR.B)I for each Vj of

the form ψ. Let µ : NV →4I be a variable mapping such that µ(x) = σ(x)I and

µ(yk) = σ(yk)
I for each branch variable yk not occurring in an atom of the form ψ;

furthermore, for each set of branch variables y1, . . . , yh+1 occurring in an atom of the

form ψ, we set µ(y1), . . . , µ(yh+1) to arbitrarily chosen domain elements that verify

σ(x)I 6∈ (≤ hR.B)I . Clearly, I, µ 6|= Vj for each Vj not occurring in a subset (5.6)

or (5.7) of r; furthermore, by the definition of µ, we have that I, µ 6|= Vj for each Vj

occurring in a subset of (5.6) or (5.7) of r. But then, we conclude I, µ 6|= (C,A0),

which is a contradiction.

(≥-rule) Since ≥ nR.B(s) ∈ A0, we have I |= ≥ nR.B(s), which implies that do-

main elements α1, . . . , αn ∈ 4I exist where 〈sI , αi〉 ∈ RI and αi ∈ BI for 1 ≤ i ≤ n,

and αi 6= αj for 1 ≤ i < j ≤ n. Let I ′ be an interpretation obtained from I by set-

ting tI
′
i = αi. Clearly, I ′ |= ar(R, s, ti), I ′ |= B(ti), and I ′ |= ti 6≈ tj for i 6= j, so

I ′ |= (C,A1). The individuals ti are not root individuals, so I ′ is NI -compatible with

A1. Further, I and I ′ differ only with respect to interpretation of each ti, which are

not named individuals, so I ′ coincides with I on (NR, NC , NN).

(≈-rule) Assume that the ≈-rule is applied to the assertion s ≈ t ∈ A0 and s is

merged into t. Since I |= s ≈ t, we have sI = tI . Pruning removes assertions, so I is

a model of the pruned ABox by monotonicity. Merging simply replaces an individual

with a synonym, so I |= (C,A1). Furthermore, by Property (7) of HT-ABoxes, A does

not contain renamings for s and t, so ‖s‖A1 = t; hence, I is NI -compatible with A1.

(⊥-rule) This rule is never applicable if (C,A0) is satisfiable.

(NI -rule) Assume that the NI -rule is applied to some s ≈ t@u
≤nR.B ∈ A0 and

s is merged into a root individual. Since I is NI -compatible with A0, we have

74



uI ∈ (≤ nR.B)I , 〈uI , sI〉 ∈ RI , sI ∈ BI , and sI = (u.〈R,B, i〉)I for some 1 ≤ i ≤ n.

Let vi = ‖u.〈R,B, i〉‖A0 ; since I is NI -compatible, we have (u.〈R,B, i〉)I = vIi . Thus,

the NI -rule replaces s by its synonym vi, so I |= (C,Ai) just like in the case of the

≈-rule. If vi does not occur in A0, the interpretation I may not be NI -compatible

with Ai because it does not interpret vi.〈S,C, `〉 correctly. We then extend I to I ′

as follows. For each m, S, and C such that vIi ∈ (≤ mS.C)I , let α1, . . . , αk be the

elements of 4I such that 〈vIi , αj〉 ∈ SI and αj ∈ CI ; clearly, k ≤ m. We then set

(vi.〈S,C, `〉)I
′
= α` for 1 ≤ ` ≤ k. Since none of vi.〈S,C, `〉 occurs in Ai, we have

I ′ |= (C,Ai), so I ′ is NI -compatible with Aj. Since vi does not occur in A0, it is not

a named individual, so I ′ coincides with I on (NR, NC , NN).

This completes the proof of (*). To prove the main claim of this lemma, let A

be an input ABox. Similarly as for the NI -rule in the proof of (*), we can extend I

to a model I ′ of (C,A) which coincides with I on (NR, NC , NN). Since A does not

contain annotated equalities, I ′ is NI -compatible with A. The claim of this lemma

then follows by a straightforward inductive application of (*). �

We now present the procedure for constructing an interpretation from a clash-free

HT-abox A. Since our logic does not have the finite model property, we obtain this

model by unraveling A as intuitively explained in Section 3.3. As usual, elements

of the unraveled model are paths [Horrocks and Sattler, 2001; Horrocks and Sattler,

2007], with each path representing one copy of an individual occurring in A′.

Definition 15 (Unravelling) Let A be a clash-free HT-ABox. Given an individual

s that is directly blocked in A, the blocker of s is the smallest individual t w.r.t. ≺

such that s is directly blocked by t.

A path is finite sequence of pairs of individuals p = [ s0
s′0
, . . . , sn

s′n
]. Let tail(p) = sn

and tail′(p) = s′n. Furthermore, let q = [p | sn+1

s′n+1
] be the path [ s0

s′0
, . . . , sn

s′n
, sn+1

s′n+1
]; we say

that q is a successor of p, and p is a predecessor of q. Given an HT-ABox A, the set

of all paths P(A) on A is defined inductively as follows:

75



• [a
a
] ∈ P(A) for each root individual a occurring in A;

• [p | s′
s′

] ∈ P(A) if p ∈ P(A), s′ is a successor of tail(p), s′ occurs in A, and s′ is

not blocked in A; and

• [p | s
s′

] ∈ P(A) if p ∈ P(A), s′ is a successor of tail(p), s′ occurs inA, s′ is directly

blocked in A, and s is the blocker of s′ in A.

Intuitively, [p | s
s′

] represents a copy of the nonblocked individual s standing in

place of the individual s′, which is either s or is blocked by s. If an individual s′ is

blocked by one of its ancestors s in A, then P(A) will contain an infinite number of

paths of the form [..., s
s
, t1
u1
, ..., tn

un
, s
s′
, t1
u1
, ..., tn

un
, s
s′
, t1
u1
, ..., tn

un
, s
s′
, ...].

Given HT-ABox A, the unraveling Γ(A) of A is the interpretation (4I , ·I) defined

as follows:

4I = P(A)

aI = [a
a
] for each root individual a that occurs in an assertion in A

aI = bI if a 6= b and ‖a‖A = b

AI = {p | A(tail(p)) ∈ A}
RI = {〈[a

a
], p〉 | a is a root individual and R(a, tail(p)) ∈ A} ∪

{〈p, [a
a
]〉 | a is a root individual and R(tail(p), a) ∈ A} ∪

{〈p, [p | s
s′

]〉 | R(tail(p), s′) ∈ A} ∪

{〈[p | s
s′

], p〉 | R(s′, tail(p)) ∈ A} ∪

{〈p, p〉 | R(tail(p), tail(p)) ∈ A}
4

Next we show that the above unravelling models when applied to ABoxes gener-

ated by our calculus.

76



Lemma 11 (Completeness) Let (T, λ) be a derivation for a set of HT-clauses C

and an input ABox A such λ(t) = A′ is clash-free for some leaf t of T . Then Γ(A′)

is a model of (C,A).

Proof Let Γ(A′) = (4I , ·I) be the unraveling of A′ as given by Definition 15. A′ is

an HT-ABox, so 4I is not empty. We now show that, for each path ps of the form

[ s
s′

] or [qs | ss′ ] and each individual w, the following claims hold (*):

• R(s, s) ∈ A′ (resp. A(s) ∈ A′) iff 〈ps, ps〉 ∈ RI (resp. ps ∈ AI): Immediate by

the definition of Γ(A′).

• If B(w) ∈ A′ and LA′(w) = LA′(s′) for B a literal concept, then ps ∈ BI: The

proof is immediate if B is atomic. If B = ¬A, since the ⊥-rule is not applicable

to A′, we have A(w) 6∈ A′; but then, we have A(s′) 6∈ A′ and A(s) 6∈ A′, which

by the previous case implies ps 6∈ AI .

• If ≥ nR.B(s) ∈ A′, then ps ∈ (≥ nR.B)I: By the definition of paths, s is not

blocked; since the ≥-rule is not applicable to ≥ nR.B(s), individuals u1, . . . , un

exist such that ar(R, s, ui) ∈ A′ and B(ui) ∈ A′ for 1 ≤ i ≤ n, and ui 6≈ uj ∈ A′

for 1 ≤ i < j ≤ n. Each assertion ar(R, s, ui) satisfies Property (1) of HT-ABoxes,

so each ui can be of one of the following forms.

– ui = s. Let pui = ps. But then, (*), ar(R, s, ui) ∈ A′, and B(ui) ∈ A′ imply

〈ps, pui〉 ∈ RI and pui ∈ BI .

– ui is a successor of s. If ui is directly blocked by the blocker vi, then

let pui = [ps | viui ]; otherwise, ui is not blocked because s is not blocked,

and let pui = [ps | uiui ]. Either way, we have ar(R, tail(ps), ui) ∈ A′, which,

by the definition of Γ(A′), implies 〈ps, pui〉 ∈ RI . Furthermore, we have

LA′(ui) = LA′(tail(pui)) and B(ui) ∈ A′, so pui ∈ BI .

77



– ui is a blockable predecessor of s. Since s is blockable, we have ps = [qs | ss′ ];

hence, let pui = qs. If s′ is not blocked, then s = s′ and tail(pui) = ui, so

we have ar(R, s′, tail(pui)) ∈ A′. If s′ is blocked by the blocker s, then

by the definition of pairwise blocking LA′(tail(pui), s′) = LA′(ui, s) and

LA′(s′, tail(pui)) = LA′(s, ui), so we again have ar(R, s′, tail(pui)) ∈ A′. Ei-

ther way, we have 〈ps, pui〉 ∈ RI by the definition of Γ(A′). Furthermore,

B(ui) ∈ A′ and LA′(ui) = LA′(tail(pui)) imply pui ∈ BI .

– ui and s do not satisfy any of the previous three conditions. If s is a

blockable individual, then ui is a root individual, so let pui = [ui
ui

]. If s is a

root individual, then ui is not indirectly blocked in A′ by Condition 3.2 of

the ≥-rule; but then, none of the ancestors of ui are blocked in A′, so we

can choose some pui ∈ 4I of the form pui = [p | ui
ui

]. Either way, we have

ar(R, s, ui) ∈ A′ and B(ui) ∈ A′, which imply 〈ps, pui〉 ∈ RI and pui ∈ BI .

Consider now each 1 ≤ i < j ≤ n. If tail′(pui) 6≈ tail′(puj) ∈ A′, since ⊥ 6∈ A′ and

the ⊥-rule is not applicable, we have tail′(pui) 6= tail′(puj), so pui 6= puj . Further-

more, if tail′(pui) 6≈ tail′(puj) /∈ A′, this is because tail′(pui) 6= ui, which is possi-

ble only if s′ is directly blocked by the blocker s and ui = s or ui is a blockable

predecessor of s. Note, however, that s can have at most one blockable prede-

cessor, and that there can be at most one ui such that ui = s. Therefore, we

have ui 6= uj, which implies pui 6= puj , and we conclude ps ∈ (≥ nR.B)I .

For an assertion α′ ∈ A′ of the form a ≈ b and a 6≈ b with a and b named indi-

viduals, it is straightforward to see that Γ(A′) |= α′. Furthermore, if α′ is of the form

R(a, b) or B(a), or ≥ nR.B(a) with a a named individual, (*) implies Γ(A′) |= α′.

Consider now each α ∈ A. By induction on the application of the derivation rules,

it is straightforward to show that, if α 6∈ A′, then A′ contains renamings that, when

78



applied to α, produce an assertion α′ ∈ A′. But then, since Γ(A′) |= α′, we have

Γ(A′) |= α by the definition of Γ(A′).

It remains to be shown that Γ(A′) |= C. Consider each HT-clause r ∈ C contain-

ing atoms of the form Ai(x), Uk(x, x), ar(Ri, x, yi), Bi(yi), and Cj(zj) in the an-

tecedent. Furthermore, consider a variable mapping µ such that the antecedent of r

is true in Γ(A′) and µ—that is, px ∈ AIi , 〈px, px〉 ∈ UIk , 〈px, pyi〉 ∈ RIi , pyi ∈ BIi , and

pzj ∈ CIj for px = µ(x), pyi = µ(yi), and pzj = µ(zj). Let s = tail(px), s
′ = tail′(px),

and t′i = tail′(pyi). By the definition of Γ(A′) and the fact that LA′(t′i) = LA′(ti), we

have Ai(s) ∈ A′, Uk(s, s) ∈ A′, Bi(t
′
i) ∈ A′, and ar(Ri, s, t

′
i) ∈ A′. Depending on the

relationship between s and t′i, we define ti as follows.

• t′i is a successor of s. Let ti = t′i. Clearly, Bi(ti) ∈ A′ and ar(Ri, s, ti) ∈ A′.

• t′i is a predecessor of s. We have the following cases.

– s directly blocks s′. Let ti be the predecessor of s; such ti exists since s is

blockable. By the definition of pairwise blocking, then LA′(s′, t′i) = LA′(s, ti)

and LA′(t′i, s′) = LA′(ti, s), and LA′(t′i) = LA′(ti); therefore, we conclude

that Bi(ti) ∈ A′ and ar(Ri, s, ti) ∈ A′.

– s′ is not blocked. Then s = s′; furthermore, t′i is not blocked (as s′ would

be indirectly blocked otherwise). Let ti = t′i. Clearly, it is the case that

Bi(ti) ∈ A′ and ar(Ri, s, ti) ∈ A′.

• t′i is neither the successor nor the predecessor of s. By Property (2) of HT-

ABoxes, then t′i = s or t′i is a root individual a, so pyi = px or pyi = [a
a
], re-

spectively. Let ti = tail(pyi). By 〈px, pyi〉 ∈ RIi and the definition of Γ(A′), we

conclude that Bi(ti) ∈ A′ and ar(Ri, s, ti) ∈ A′.

By Definition 11, the antecedent of r contains an atom of the form Oa(zj) for each

nominal variable zj. Thus, by the definition of I and Property (3) of HT-ABoxes, we

have pzj is of the form [
uj
uj

] for uj a named individual; furthermore, Cj(uj) ∈ A′.

79



Let σ be a mapping such that σ(x) = s, σ(yi) = ti, and σ(zj) = uj. Clearly, neither

s nor ti are indirectly blocked, and σ(Uj) ∈ A′ for each atom Uj in the antecedent of

r. The Hyp-rule is not applicable to r, A′, and σ, so r contains an atom Vi in the

consequent such that σ(Vi) ∈ A′. Depending on the type of Vi, we have the following

possibilities.

• Vi is of the form yi ≈ yj @x
≤k S.B; thus, we have ti ≈ tj @s

≤k S.B ∈ A′. Since the

≈-rule is not applicable to A′, we have ti = tj. By Definition 11, r contains

a subclause of the form (5.6) or (5.7), so the antecedent of r contains atoms

ar(S, x, yi) and ar(S, x, yj); therefore, 〈px, pyi〉 ∈ SI and 〈px, pyj〉 ∈ SI . The NI -

rule is not applicable to ti ≈ tj @s
≤k S.B so, by the preconditions of the NI -rule,

if s is a root individual, then ti is either a root individual or a successor of s.

Thus, by Property (1) of HT-ABoxes, we have these possibilities: ti is a root

individual, ti = s, ti is a predecessor of s, or ti is a successor of s. If ti is a root

individual or if ti = s, then ti = tj implies pyi = pyj by the definition of paths.

Both pyi and pyj can be successors of px, but again, ti = tj implies pyi = pyj .

Both pyi and pyj can be predecessors of px; but then pyi = pyj since px can have

at most one predecessor. Assume that pyi is a predecessor, but pyj is a successor

of px; since ti is not blocked, it must be that ti 6= tj, which is a contradiction.

Thus, Γ(A′), µ |= r.

• Vi is of the form x ≈ zj; thus, we have s ≈ uj ∈ A. Since the ≈-rule is not

applicable to A′, we have s = uj. Since uj is a named individual, it cannot

block other individuals, so s′ = s, which implies px = pzj . Thus, Γ(A′), µ |= r.

• Vi is of the form Ti(x, x); thus, we have Ti(s, s) ∈ A′. By (*), we then have

〈px, px〉 ∈ RIi . Thus, Γ(A′), µ |= r.

• Vi is of the form Di(x) for Di a literal concept or of the form ≥ nT.B; thus, we

have Di(s) ∈ A′. By (*), we then have px ∈ DIi . Thus, Γ(A′), µ |= r.

80



• Vi is of the form Ei(yi) for Ei a literal concept; thus, we have Ei(ti) ∈ A′. By the

definition of blocking, we have LA′(ti) = LA′(t′i); by (*), we then have pyi ∈ EIi .

Thus, Γ(A′), µ |= r.

• Vi is of the form ar(Si, x, yi), so ar(Si, s, ti) ∈ A′. By the definition of blocking, we

have ar(Si, s
′, t′i) ∈ A′. Finally, by the definition of Γ(A′), we have 〈px, pyi〉 ∈ SIi .

Thus, Γ(A′), µ |= r.

• Vi is of the form ar(Sj, x, zj), so ar(Sj, s, uj) ∈ A′. Since uj is a named individual,

by the definition of Γ(A′) we have 〈px, pzj〉 ∈ SIj . Thus, Γ(A′), µ |= r.

It is thus the case that Γ(A′) |= C. �

We next prove termination of the hypertableau calculus.

Lemma 12 (Termination) For a set of HT-clauses C and an input ABox A, let

|C,A| be the sum of the number of assertions in A, the number of concepts and roles

in C, and of dlog ne for each integer n occurring in C or A in an atom of either

the form ≥ nR.B or the form yi ≈ yj @x
≤nR.B. Both the length of every path on each

derivation for C and A and the total number of individuals introduced on each such

path is at most doubly exponential in |C,A|.

Proof We begin by showing that the number of new individuals introduced on each

derivation path is at most doubly exponential in |C,A|.

A path of length n between individuals s and t in an ABox A′ is a sequence of

individuals u0, u1, . . . , un such that u0 = s, un = t, and, for each 0 ≤ i ≤ n− 1, either

Ri(ui, ui+1) ∈ A′ or Ri(ui+1, ui) ∈ A′ for R0, ...Rn−1 atomic roles.

A root path for a root individual t in an HT-ABox A′ is a path between t and a

named individual s such that all intermediate individuals ui, 1 ≤ i ≤ n− 1, are root

individuals. The level lev(t) of t is the length of the shortest root path for t. Thus,

lev(t) = 0 if t is a named individual.

81



The depth dep(t) of an individual t is the number of ancestors of t. Thus, dep(t) = 0

if t is a root individual. Due to Property (5) of HT-ABoxes, if an individual t occurs

in an HT-ABox A′, then A′ contains a path of length dep(t) between a root individual

s and t such that the individuals ui, 0 ≤ i ≤ n− 1, are all ancestors of t; since each

individual has at most one predecessor, these ui are also the only ancestors of t.

We now show that the maximum level of a root individual and the maximum

depth of every individual are both at most exponential in |C,A|.

An application of a derivation rule never increases the level of an individual.

This is because a named individual is never pruned and can be merged only into

another named individual,3 and a root individual can be merged only into another

root individual. Such rule applications can only make a root path shorter, and not

longer.

Let m be the number of atomic concepts and n the number of atomic roles that

occur in A and C, let ℘ = 22m+2n + 1, and let A′ be an ABox labeling a node of

a derivation for A and C. We next show that (1) dep(t) ≤ ℘ for each individual t

occurring in A′, and (2) if t is a root individual, then lev(t) ≤ ℘.

(Claim 1) For a pair of individuals s and t occurring in A′, there are 2m different

possible labels LA′(s) and 2n different possible labels LA′(s, t). Thus, if A′ contains

at least ℘ = 2m · 2m · 2n · 2n + 1 predecessor-successor pairs of blockable individuals,

then A′ must contain two pairs 〈s, s.i〉 and 〈t, t.j〉 such that the following conditions

are satisfied:

LA′(s.i) = LA′(t.j) LA′(s) = LA′(t)
LA′(s, s.i) = LA′(t, t.j) LA′(s.i, s) = LA′(t.j, t)

Since ≺ contains the ancestor relation, a path in A′ containing ℘ blockable individuals

must include at least one blocked individual, so a blockable individual of depth ℘ must

3If a derivation rule were to replace a named individual with an individual that is not named,
the levels of other root individuals could increase; see Figure 3.7 and the related discussion in
Section 3.5.1.

82



be blocked. The ≥-rule is applied only to individuals that are not blocked, so the rule

cannot introduce an individual u such that dep(u) > ℘.

(Claim 2) We show that the following stronger claim (*) holds for each root

individual s occurring in an assertion in A′ (the symmetry of ≈ applies as usual):

1. lev(s) ≤ ℘;

2. if R(s, t) ∈ A′ or R(t, s) ∈ A′ or t ≈ u@s
≤nR.B ∈ A′ with t a blockable nonsuc-

cessor of s, then lev(s) + dep(t) ≤ ℘; and

3. if s ≈ t ∈ A′ with t a blockable nonsuccessor of s (where the equality can be

annotated), then lev(s) + dep(t) ≤ ℘+ 1.

This claim is clearly true for the input ABox A labeling the root of a derivation, which

contains only named individuals. We now assume that (*) holds for some ABox A′

and consider all possible derivation rules that can be applied to A′.

• Assume that the Hyp-rule derives an assertion R(s, t) or R(t, s), where s is a

root individual and t is a blockable nonsuccessor of s. Let R(x, y) or R(y, x)

be the atom from the consequent of an HT-clause r that is instantiated by the

derivation rule. We have the following two possibilities for the antecedent of r.

– The antecedent of r contains an atom of the form S(x, y) or S(y, x) that

is matched to an assertion of the form S(s, t) or S(t, s) in A′. Since A′

satisfies (*), the resulting ABox satisfies (*) as well.

– The antecedent of r contains an atom of the form Oa(x) or Oa(y) that is

matched to an assertion of the form Oa(s) in A′ (since t is blockable, A′

cannot contain Oa(t) by Property 3 of HT-ABoxes). Then dep(t) ≤ ℘ and

lev(s) = 0, so the resulting ABox satisfies (*) as well.

83



• Assume that the Hyp-rule derives an assertion t ≈ u@s
≤nR.B, where s is a root in-

dividual and t is a blockable nonsuccessor of s. By Definition 11, the antecedent

of the HT-clause then contains atoms of the form ar(R, x, yi) and ar(R, x, yj)

that are matched to assertions ar(R, s, t) and ar(R, s, u) in A′. Since A′ satisfies

(*), we have lev(s) + dep(t) ≤ ℘, so the resulting equality satisfies Item 2 of

(*). To show that t ≈ u@s
≤nR.B satisfies Item 3 of (*), assume that u is a root

individual and t is a nonsuccessor of u. Since A′ contains ar(R, s, u), we have

that lev(u) ≤ lev(s) + 1; but then, lev(u) + dep(t) ≤ ℘+ 1, as required.

• If the Hyp-rule derives an assertion s ≈ t, where s is a root individual and

t is a blockable nonsuccessor of s, the only remaining possibility is that the

consequent of the HT-clause then contains the equality x ≈ zj. By Definition 11,

the antecedent then contains Oa(zj) that is matched to an assertion Oa(s) in A′,

where s is a named individual. Then dep(t) ≤ ℘ and lev(s) = 0, so the resulting

ABox satisfies (*).

• Assume that the ≥-rule introduces an assertion of the form R(s, t) or R(t, s)

where t is a fresh individual. Individual t is always a successor of s, so the

resulting ABox trivially satisfies (*).

• Assume that the ≈-rule is applied to an assertion of the form u ≈ s and that

u is merged into s. By the definition of merging, we have that dep(u) ≥ dep(s)

and u is pruned. If s is a blockable individual, then u is blockable as well, and

the resulting ABox satisfies (*) because u is replaced with an individual of equal

or smaller depth. Therefore, we assume that s is a root individual and consider

the types of assertions that can be added to A′ as a result of merging.

– If R(u, u) is changed into R(s, s), the resulting ABox clearly satisfies (*).

84



– Assume that R(u, t) where t is a root individual is changed into R(s, t).

This inference can make root paths to s and t only shorter and not longer,

so the levels of s and t can only decrease rather than increase. Thus, the

resulting ABox satisfies Item 1 of (*).

– Assume that R(u, t), where t is a predecessor of u, is changed into R(s, t);

the only nontrivial case is when t is a blockable nonsuccessor of s. Since t

is a predecessor of u, we have dep(t) + 1 = dep(u); since A′ satisfies (*), we

have lev(s) + dep(u) ≤ ℘+ 1; but then, lev(s) + dep(t) ≤ ℘ as required.

– The cases when R(t, u) is changed into R(t, s) are analogous.

– Assume that a possibly annotated equality v ≈ u is changed into v ≈ s.

The only nontrivial case is when v is a blockable nonsuccessor of s. If

u is a root individual, then the level of s after merging is bounded by

min(lev(s), lev(u)) before merging, so (*) is preserved. If u and v are both

blockable individuals, then by Property (2) of HT-ABoxes, either u is an

ancestor of v, or u and v are siblings, or v is an ancestor of u. If u is an an-

cestor of v, then pruning u removes v ≈ u from A′. If v is a sibling or an an-

cestor of u, then u must be a nonsuccessor of s, so lev(s) + dep(u) ≤ ℘+ 1;

but then, dep(v) ≤ dep(u), so lev(s) + dep(v) ≤ ℘+ 1 and (*) is preserved.

– Assume that v ≈ v′@u
≤nR.B is changed into v ≈ v′@s

≤nR.B or v ≈ s@s
≤nR.B.

The only nontrivial case is when v is a blockable nonsuccessor of s. Since u

is pruned before merging, by Properties (2) and (4) or HT-ABoxes v must

be a predecessor of u, so dep(v) + 1 = dep(u). Furthermore, by the same

properties umust be a blockable nonsuccessor of s, so lev(s) + dep(u) ≤ ℘+ 1.

But then, lev(s) + dep(v) ≤ ℘, as required.

• An application of the ⊥-rule trivially preserves (*).

85



• Assume that the NI -rule is applied to an assertion s ≈ t@u
≤nR.B replacing s

with a root individual v = ‖u.〈R,B, i〉‖A′ . If v already occurs in an assertion in

A′, then v satisfies Item 1 of (*). If, however, v is fresh, by Property (4) of HT-

ABoxes v will be connected to u by a role assertion, so lev(v) ≤ lev(u) + 1. Fur-

thermore, since s is a blockable nonsuccessor of u, we have lev(u) + dep(s) ≤ ℘.

Finally, since s is blockable, dep(s) ≥ 1, so lev(u) ≤ ℘− 1. As a consequence,

we conclude that lev(v) ≤ ℘, which proves Item 1 of (*). The proof that the

assertions introduced through merging satisfy (*) is analogous to the case for

the ≈-rule.

We now complete the proof that the total number of individuals introduced by

derivation rules is at most doubly exponential in |C,A|.

All named individuals are of level 0 and are never introduced by the derivation

rules. An application of the NI -rule to a root individual u of level ` can introduce at

most n root individuals of level `+1 for each concept ≤ nR.B that occurs in C. Thus,

for each named individual, the derivation rules can create a tree of root individuals.

The maximum depth of the tree is ℘, which is exponential in |C,A|. Furthermore, the

maximum branching factor b is equal to the sum of all numbers occurring in C in atoms

of the form yi ≈ yj @x
≤nR.B (i.e. one application of the ≥-rule for each such concept).

Clearly, b is exponential in |C,A|, so each such tree is doubly exponential in |C,A|.

(If numbers were coded in unary, then the branching factor would be polynomial, but

each such tree would still be doubly exponential in |C,A|.)

Similarly, each root individual can become the root of a tree of blockable individ-

uals of depth ℘. Each blockable individual is introduced by applying the ≥-rule to

its predecessor. Furthermore, the ≥-rule can be applied to an individual s at most

once for each concept of the form ≥ nR.B. Thus, the branching factor is exponential

assuming binary coding of numbers, and each such tree is at most doubly exponential

in |C,A|.

86



Thus, the total number of individuals appearing in each path of a derivation is at

most doubly exponential in |C,A|.

To find a bound on the length of each path of a derviation, we first observe

that once all assertions involving an individual have been removed due to merging

or pruning, no assertion involving that individual is ever reintroduced on the same

derivation path. For root individuals, this is a consequence of the fact that if a root

individual s is removed from an ABox A′ due to merging, then a renaming is added to

A′ that ensures ‖s‖A′ 6= s. Once a renaming is added toA′, all ABoxes occurring below

A′ in a derivation will contain this renaming as well, so no subsequent application

of the NI -rule can reintroduce s. For other individuals, we simply note that the

supply of blockable individuals is infinite, so we can assume that each fresh individual

introduced by the ≥-rule is unique.

Each application of a derivation rule either merges one individual into another or

introduces at least one assertion not previously present in A′. Since merging removes

an individual and there are at most doubly-exponentially many individuals, there can

be at most doubly-exponentially many rule applications resulting in a merge. Further,

each assertion involves at most two individuals, the number of distinct assertions

about a pair of individuals is polynomial in |C,A|, and assertions are only removed as a

result of pruning, so there can be at most doubly-exponentially many rule applications

resulting in fresh assertions. �

We now state the main theorem of this chapter.

Theorem 13 The satisfiability of a SROIQ knowledge base K can be decided by

computing K′ = ∆(Ω(K)) and then checking whether some derivation for Ξ(K′) con-

tains a leaf node labeled with a clash-free ABox. Such an algorithm can be implemented

such that it runs in nondeterministic triple exponential time with respect to |K|.

87



Proof The first part of the theorem follows immediately from Lemmas 5, 7, 10, and

11. For the second part, preprocessing produces at worst an exponential increase in

size and number of symbols from |K| to |Ξ(K′)|. By Lemma 12, the total number of

individuals in each ABox is at most doubly exponential in |Ξ(K′)|, thus clearly each

rule application runs in nondeterministic double exponential time in |Ξ(K′)|, and each

derivation path contains a number of steps which is at mostly doubly exponential in

|Ξ(K′)|. The existence of a leaf derivation node labeled with a clash-free ABox can

thus be checked by nondeterministically applying the hypertableau derivation rules

to construct an ABox, and this procedure runs in nondeterministic triple exponential

time with respect to |K|. �

88



Chapter 6

Optimizations

While the encodings and calculus described in Chapter 5 have been shown to provide

a novel theoretical framework that can be used to search for models of SROIQ

knowledge bases, our primary goal is to develop techniques that lend themselves to

efficient implementation. In this chapter we we discuss the possibilities of optimizing

the blocking condition to single and subset blocking; furthermore, we argue that

modifying the algorithm to make it optimal w.r.t. worst-case complexity might be

difficult.

6.1 Caching Blocking Labels

Let T and R be a SHIQ+ TBox and RBox, respectively, and let C = ΞT R(T ∪ R);

since T does not contain nominals, no assertions involving nominal guard concepts

are needed. Furthermore, assume that the classification of T ∪ R involves n calls

to the hypertableau algorithm for ({Ai(ai),¬Bi(ai)}, C). Then, if a derivation for

({Ai(ai),¬Bi(ai)}, C) contains a leaf node labeled with a clash-free ABox Ai, we can

use the nonblocked individuals from Ai as blockers in all subsequent satisfiability

checks of ({Aj(aj),¬Bj(aj)}, C) for j > i.

This is a simple consequence of the following fact. Let I1 and I2 be two models of

T ∪ R such that 4I1 ∩4I2 = ∅; furthermore, let I be defined as 4I = 4I1 ∪4I2 ,

AI = AI1 ∪ AI2 , and RI = RI1 ∪RI2 , for each atomic concept A and each atomic role

89



R. Then, by a simple induction on the structure of axioms in T ∪ R, it is trivial to

show that I |= T ∪ R. This property does not hold in the presence of nominals, which

can impose a bound on the number of elements in the interpretation of a concept;

the bound could be satisfied in I1 and I2 individually, but violated in I.

Our optimization is correct because, instead of ({Ai(ai),¬Bi(ai)}, C), we can check

the satisfiability of (Ai ∪ {Ai(ai),¬Bi(ai)}, C), and in doing so we can use the indi-

viduals from Ai as potential blockers due to anywhere blocking. This optimization

can be seen as a very simple form of model caching [Horrocks, 2007], and it has been

key to obtaining the results that we present in Chapter 12. For example, on GALEN

only one subsumption test is costly because it computes a substantial part of a model

of the TBox; all subsequent subsumption tests reuse large parts of that model.

In practice, we do not need to keep the entire ABox Ai around; rather, for each

nonblocked blockable individual t with a predecessor t′, we simply need to retain the

sets LAi
(t), LAi

(t′), LAi
(t, t′), and LAi

(t′, t).

6.2 Single Blocking

For DLs such as SHOQ+ that do not provide for inverse roles, pairwise blocking can

be weakened to atomic single blocking, defined as follows.

Definition 16 (Atomic Single Blocking) Atomic single blocking is obtained from

pairwise blocking (see Definition 13) by changing the notion of direct blocking: a

blockable individual s is directly blocked by a blockable individual t if and only if t

is not blocked, t ≺ s, and LA(s) = LA(t) for LA(s) as in Definition 13.1 4

In some cases, this simpler blocking condition can make the hypertableau al-

gorithm construct smaller ABoxes, which can lead to increased efficiency. We next

formalize the notion of HT-clauses to which atomic single blocking is applicable.

1 The name “atomic” reflects the fact that LA(s) contains only atomic concepts.

90



Definition 17 (Simple HT-Clause) An HT-clause r is simple if it satisfies the fol-

lowing restrictions, for x a center variable, yi a branch variable, zj a nominal variable,

B a literal concept, and R an atomic role:

• Each atom in the antecedent of r is of the form A(x), R(x, x), R(x, yi), A(yi),

or A(zj).

• Each atom in the consequent of r is of the form B(x), ≥ hR.B(x), B(yi),

R(x, x), R(x, yi), R(x, zj), x ≈ zj, or yi ≈ yj. 4

It is straightforward to see that, if K is a SHOQ+ knowledge base, then ΞT R(K)

contains only simple HT-clauses. The completeness of the hypertableau algorithm

with atomic single blocking on simple HT-clauses is straightforward to show.

Lemma 14 Let C be a set of simple HT-clauses, and A an input ABox. If a derivation

with atomic single blocking for C and A exists in which a leaf node is labeled with a

clash-free ABox A′, then (C,A) is satisfiable.

Proof By slightly modifying the proof of Lemma 9, it is possible to show the following

property (*): each atom in A′ involving an atomic role is of the form R(s, a), R(s, s),

or R(s, s.i), for a a named individual and s any individual.

Let I be a model constructed in the same way as in Lemma 11, but by using

single blocking. Due to (*), whenever 〈p1, p2〉 ∈ RI , then p2 is either of the form [a
a
]

for a a named individual, it is a successor of p1, or p2 = p1. The proof that I is a

model of (C,A) is a straightforward consequence of the following observations about

the proof of Lemma 11:

• In the proof that ≥ nR.B(s) ∈ A′ implies ps ∈ (≥ nR.B)I , individual ui can

never be a blockable predecessor of s. Thus, labels LA′(s, ui), LA′(ui, s), and

LA′(ui) are never relevant.

91



• In the proof that I |= C, it is not possible that s′ is blocked and t′i is a predecessor

of s′. Thus, labels LA′(s, ti), LA′(ti, s), and LA′(ti) are never relevant.

The proof that I is a model of (A, C) thus requires only LA′(s) = LA′(t) to hold

when s is blocked by the blocker t; hence, I is a model of (A, C) even if atomic single

blocking is used. �

The following variant of single blocking can also be applied to DLs with inverse

roles but no number restrictions, such as SHOI.

Definition 18 (Full Single Blocking) Full single blocking is obtained from atomic

single blocking (see Definition 16) by changing the definition of LA(s) as follows:

LA(s) = { C | C(s) ∈ A where C is of the form A or ≥ 1R.B

with A an atomic and B a literal concept }
4

For t to directly block s in A under atomic single blocking, it suffices if s and

t occur in the same atomic concepts in A. Intuitively, this is because the model

construction from Lemma 11 “copies” all nonatomic concepts from t to s; hence,

assertions of the form C(s) where C is not atomic are not relevant. In contrast, in

full single blocking, s and t must occur in A in exactly the same concepts (apart

from negated atomic concepts). Intuitively, given a clash-free ABox A′ to which no

derivation rule is applicable, a model for (A, C) is constructed from A′ by replacing

s with t; for the result to be a model, the two individuals must occur in exactly the

same concepts.

Full single blocking must be applied with care in the hypertableau setting. Con-

sider the following knowledge base K11, consisting of an ABox A11 and a set of HT-

clauses C11.

A11 = { ∃T.C(a) }

C11 = {C(x)→ ∃R.D(x), D(x)→ ∃S−.C(x), R(x, y1) ∧ S(x, y2)→ ⊥}

92



a

C
∃R.D

b

D
∃S−.C

c

C
∃R.D

R S

Figure 6.1: Problems with Single Blocking

On K11, the hypertableau algorithm with full single blocking produces the ABox

shown in Figure 6.1. The individual d is blocked by b, so the algorithm terminates; an

expansion of ∃R.D(d), however, would reveal that K11 is unsatisfiable. The problem

arises because the HT-clause R(x, y1) ∧ S(x, y2)→ ⊥ contains two role atoms, which

allows the HT-clause to examine both the successor and the predecessor of x. Full

single blocking, however, does not ensure that both predecessors and successors of

x have been fully built. We can correct this problem by requiring the normalized

GCIs to contain at most one ∀R.C concept. For example, if we replace our HT-

clause with R(x, y1)→ Q(x) and Q(x) ∧ S(x, y2)→ ⊥, then the first HT-clause would

additionally derive Q(b), so d would not be blocked by b.

We can apply full single blocking to the DL SHOI provided that each HT-clause

contains at most one role atom in the antecedent. We can always ensure this by

suitably renaming complex concepts with atomic ones.

Lemma 15 Let A be an ABox and C a set of HT-clauses such that, for each r ∈ C,

( i) r contains no atoms of the form R(x, x), ( ii) the antecedent of r contains at most

one role atom, and ( iii) all at-least restriction concepts are of the form ≥ 1S.B for

S a role and B a literal concept. If a derivation with full single blocking for C and

A exists in which a leaf node is labeled with a clash-free ABox A′, then (C,A) is

satisfiable.

Proof Let A′′ be obtained from A′ by removing each assertion containing an indi-

rectly blocked individual. Since no derivation rule is applicable to indirectly blocked

93



individuals, no derivation rule is applicable to A′′ and C. For an individual s occurring

in A′′, let [s]A′′ = s if s is not blocked in A′′, and let [s]A′′ = s′ if s is blocked in A′′

by the blocker s′.

Note the following useful property (*): if ¬A(s) ∈ A′′, then A(s) 6∈ A′′ since the

⊥-rule is not applicable to A′′; but then, A([s]A′′) 6∈ A′′ as well.

We now construct an interpretation I from A′′ as follows.

4I ={s | s occurs in A′′ and it is not blocked in A′′}

sI =[s]A′′ for each individual s occurring in A′′

AI ={[s]A′′ | A(s) ∈ A′′}

RI ={〈[s]A′′ , [t]A′′〉 | R(s, t) ∈ A′′}

It is straightforward to see that I |= A′′. Consider now each HT-clause r ∈ C that

contains in the antecedent one atom of the form R(x, y), as well as atoms of the form

Ai(x),Bi(y), Ci(zi). Let σ be a mapping from the variables of r to the individuals inA′′

such that I |= σ(Ui) for each atom Ui from the antecedent of r. By the definition of I,

individuals s and t then exist such that R(s, t) ∈ A′′, σ(x) = [s]A′′ , and σ(y) = [t]A′′ .

By the definition of full single blocking, then Ai(s) ∈ A′′ and Bi(t) ∈ A′′ as well.

Furthermore, since each zi occurs in a nominal guard concept, σ(zi) is a named

individual. Let σ′ be such that σ′(x) = s, σ′(y) = t, and σ′(zi) = σ(zi). Since the

Hyp-rule is not applicable to C and A′′ for σ′, we have σ′(Vj) ∈ A′′ for some atom Vj

from the consequent of r. Consider now the possible forms that Vj can have.

• If Vj = S(x, y), then I |= S(σ(x), σ(y)) by the definition of I. The case Vj = S(y, x)

is analogous.

• If Vj = A(x) for A an atomic concept, then A([s]A′′) ∈ A′′ by the definition of

full single blocking; but then, I |= A(σ(x)) by the definition of I. The case when

Vj = A(y) is analogous.

94



• If Vj = ¬A(x), then A([s]A′′) 6∈ A′′ by (*); but then, by the definition of I we

have I |= ¬A(σ(x)). The case when Vj = ¬A(y) is analogous.

• If Vj = D(x) for D = ≥ 1R.B, then D([s]A′′) ∈ A′′ by the definition of full sin-

gle blocking. Since the ≥-rule is not applicable to [s]A′′ , an individual t exists

such that ar(R, s, t) ∈ A′′ and if B is atomic, then B(t) ∈ A′′, and if B = ¬A,

then A(t) 6∈ A′′. By the definition of full single blocking, if B is atomic, then

B([t]A′′) ∈ A′′, and if B = ¬A, then A([t]A′′) 6∈ A′′. By the definition of I, we

have 〈[s]A′′ , [t]A′′〉 ∈ RI , and [t]A′′ ∈ BI ; therefore, I |= D(σ(x)). The case when

Vj = D(y) is analogous.

• If Vj = x ≈ zi, then σ′(x) ≈ σ′(zi) ∈ A′′; since the ≈-rule is not applicable to

A′′, we have σ′(x) = σ′(zi). But then, since named individuals cannot block

other individuals, we have σ(x) = σ′(x); hence, I |= σ(x) ≈ σ(zi).

Thus, in all cases we have I |= σ(Vj). The case when r does not contain a role atom

R(x, y) in the antecedent is analogous, so I |= (A, C). �

6.3 Subset Blocking

In tableau algorithms for DLs without inverse roles, full single blocking condition from

Definition 18 can be further weakened to full subset blocking [Baader et al., 1996].

Definition 19 (Full Subset Blocking) Full subset blocking is obtained from full

single blocking (see Definition 18) by changing the notion of direct blocking: a block-

able individual s is directly blocked by an individual t if and only if t is not blocked,

t ≺ s, and LA(s) ⊆ LA(t). 4

Full subset blocking is problematic in the hypertableau setting. Consider the

knowledge base K12 that consists of an ABox A12 and a TBox corresponding to

95



a

C
∃R.C
∃S.D
E

b D

c
C
∃R.C
∃S.D

S

R

Figure 6.2: Problems with Full Subset Blocking

the HT-clauses C12.

A12 = { ∃T.C(a) }

C12 =

{
C(x)→ ∃R.C(x), C(x)→ ∃S.D(x),
S(x, y) ∧D(y)→ E(x), R(x, y) ∧ E(y)→ ⊥

}
On K12, our algorithm can produce the ABox shown in Figure 6.2, in which d is

blocked by b. If, however, we expand ∃S.D(d) into S(d, e) and D(e), we can derive

E(d); together with R(b, d) and the HT-clause R(x, y) ∧ E(y)→ ⊥, we get a contra-

diction.

The problem arises because, in the hypertableau setting, the syntactic distinction

between atomic and inverse roles is lost: an atom R−(x, y) is transformed (by the

function ar) into the semantically equivalent atom R(y, x). In K12, the HT-clause

S(x, y) ∧D(y)→ E(x) can be seen as including an implicit inverse role, because it

examines a successor of x in the antecedent in order to derive new information about

x in the consequent, thus mimicking the behavior of tableau algorithms with the

semantically equivalent GCI D v ∀S−.E.

The semantically equivalent but inverse-free GCI ∃S.D v E would, in our hyper-

tableau algorithm, be transformed into exactly the same HT-clause. In the tableau set-

ting, however, this GCI would be treated very differently: it would result in the v-rule

deriving (E t ∀S.¬D)(s) for all individuals s. A similar effect could be achieved in the

hypertableau setting by translating ∃S.D v E into two HT-clauses:> → E(x) ∨Q(x)

andQ(x) ∧ S(x, y) ∧D(y)→ ⊥. This introduces nondeterminism, but solves the prob-

lem with full subset blocking by deriving either E(c) or Q(c), the first of which leads

96



to an immediate contradiction, and the second of which delays blocking.

In general, it is easy to see that full subset blocking could be used in the hyper-

tableau setting by modifying the preprocessing phase so as to ensure that HT-clauses

do not include such implicit inverses. It is not clear, however, if this would be very

useful: it would result in (possibly) smaller ABoxes, but at the cost of (possibly)

larger derivation trees.

6.4 The Number of Blockable Individuals

Buchheit et al. [1993] presented a tableau algorithm for the DL ALCNR which, due

to anywhere blocking, runs in nondeterministic exponential time instead of nondeter-

ministic doubly-exponential time, and Donini et al. [1998] presented a similar result

for the basic DL ALC. It is interesting to compare these algorithms to ours to see

whether anywhere blocking can improve the worst-case complexity of our algorithm

when K is a SHIQ+ knowledge base. In such a case, no HT-clause in Ξ(K) con-

tains a nominal guard concept, which prevents the derivation of assertions satisfying

the preconditions of the NI -rule; hence, no new root individuals are introduced in a

derivation, which eliminates a significant source of complexity.

The following example shows that, unfortunately, anywhere blocking does not

improve the worst-case complexity; in fact, we identify a tension between and- and

or-branching. In the example, we use the well-known encoding of binary numbers

by concepts B0, B1, . . . , Bk−1: we assign to each individual s in an ABox A a binary

number `A(s) = bk−1 . . . b1b0 such that bi = 1 if and only if Bi(s) ∈ A. Using k con-

cepts, we can thus encode 2k different binary numbers. Furthermore, for any atomic

role R we can ensure that whenever an individual t is an R-successor of s in A,

then `A(t) = (`A(s) + 1) mod 2k using the well-known R-successor counting formula

97



[Tobies, 2000]:

{ Bi u
i−1l

j=0

Bj v ∀R.¬Bi, ¬Bi u
i−1l

j=0

Bj v ∀R.Bi | 0 ≤ i < k } ∪

{ Bi u
i−1⊔
j=0

¬Bj v ∀R.Bi, ¬Bi u
i−1⊔
j=0

¬Bj v ∀R.¬Bi | 0 ≤ i < k }

Intuitively, this formula requires that if all the bits b0, ..., bi−1 are set to 1 in `A(s),

then bi is flipped in `A(t); if there exists some bit in b0, ..., bi−1 set to 0, then bi remains

the same in `A(t).

Let K13 be the following knowledge base. For the sake of brevity, we omit the

HT-clauses corresponding to the axioms in K13.

C(a) (6.1)

C v ∃L.C u ∃R.C (6.2)

(The R-successor formula for B0, . . . , Bk−1) (6.3)

(The L-successor formula for B0, . . . , Bk−1) (6.4)

B0 u . . . uBk−1 v A (6.5)

∃L.A u ∃R.A v A (6.6)

Figure 6.3 schematically presents a derivation on K13 in which a doubly exponen-

tial number of blockable individuals is introduced. For simplicity of presentation, we

use single anywhere blocking. Due to (6.1)–(6.4), our algorithm can create individuals

a.1, a.2, a.1.1, a.1.2, a.1.1.1, a.1.1.2, and so on, such that s.1 is an L-successor of s,

and s.2 is an R-successor of s. After creating the individuals of the form a.12k−1.1

and a.12k−1.2 where 12k−1 is a string of 2k − 1 ones, each individual x.1 blocks x.2

(cf. Figure 6.3a). But then, due to (6.5), a.12k−1.1 and a.12k−1.2 become instances

of A. By (6.6), a.12k−1 is made an instance of A as well, so it does not block its

sibling a.12k−2.2 any more; hence, a.12k−2.2 is now expanded to exponential depth

(cf. Figure 6.3b). By repeating this process, the algorithm derives that a.12k−2 is an

98



a

a.1

x

x.1 x.2

a.2

|2
k
−
3|

(a) An exponential path is constructed
with each blockable individual blocking
its sibling. No individual contains A in
its label.

a

a.1

x

x.1

A
x.2

a.2

(b) Adding A to the label of x.1 un-
blocks x.2.

a

a.1

x

x.1

A
x.2

A

A

a.2

(c) Adding A to the label of x.2 makes
x.2 blocked, and forces the addition of
A to the label of x. This unblocks the
sibling of x so another subtree is cre-
ated.

a

(d) Derivation terminates with an exponential
number of unblocked individuals, but a doubly-
exponential number of indirectly blocked individ-
uals.

Figure 6.3: Creation of an Exponentially Deep Binary Tree of Blockable Individuals

99



instance of A, but then it does not block its sibling a.12k−3.2 (cf. Figure 6.3d). Even-

tually, the algorithm constructs a binary tree of exponential depth, thus creating a

doubly-exponential number of blockable nodes in total (cf. Figure 6.3d).

Buchheit et al. [1993] and Donini et al. [1998] obtained the nondeterministic expo-

nential behavior by applying the u-, t-, ∀-, and v-rules exhaustively before applying

the ∃-rule. Such a strategy ensures that the label of an individual s is fully constructed

before introducing a successor of s, which prevents individuals from being indirectly

blocked. On K11, this means that the GCI (6.6) is applied to each individual s be-

fore introducing its successors. Thus, before the existentials on s are expanded, the

assertion (∀L.¬A t ∀R.¬A t A)(s) is introduced and one disjunct is chosen nonde-

terministically. The choices (∀L.¬A)(s) and (∀R.¬A)(s) will lead to a clash, so the

algorithm eventually derives A(s), before it expands the existentials on s and intro-

duces s.1 and s.2. Thus, while generating at most exponential models, this algorithm

incurs a massive amount of nondeterminism.

Nondeterministic exponential behavior can be guaranteed in the hypertableau

algorithm by nondeterministically fixing the label of each individual before applying

the ≤-rule to it. This technique is similar to the one used by Tobies [2001] in order

to obtain a PSpace decision procedure for concept satisfiability in a DL with inverse

roles but without GCIs. The performance results in Chapter 12, however, seem to

suggest that this might not be beneficial in practice. Still, it might be worth exploring

whether nondeterministically adding concepts to labels of individuals can be used as

an optimization that would detect “early blocks” and thus prevent the construction

of large models.

6.5 The Number of Root Individuals

SHOIQ is NExpTime-complete [Tobies, 2000], and it is straightforward to extend

this result to ALCHOIQ+; the encoding of complex role axioms presents another

100



exponential increase in complexity, so SROIQ is N2ExpTime-complete [Kazakov,

2008]. Thus, one might wonder whether the nondeterministic triple-exponential com-

plexity result in Theorem 13 can be sharpened to obtain a worst-case optimal decision

procedure. This, unfortunately, is not the case: we present an example on which our

algorithm generates a number of root individuals with is doubly-exponential in the

size of an ALCHOIQ+ knowledge base (and thus triply-exponential overall). We

construct K14 by extending K13 (axioms (6.1)–(6.6)) with the following two axioms:

B0 u . . . uBk−1 v {b} (6.7)

A v ≤ 2L−.> u≤ 2R−.> (6.8)

As shown in Section 6.4, the axioms of K13 can cause our algorithm to construct

a binary tree of blockable individuals with exponential depth. Axiom (6.7) of K14,

however, merges the leaves of this tree into the single named individual b, and axiom

(6.8) ensures that the NI-rule is applied to each of the remaining blockable indi-

viduals, beginning with the neighbors of b. If, at each application of the NI-rule, we

always merge blockable individuals into root individuals as shown in Figure 6.4a, then

our algorithm constructs the ABox shown in Figure 6.4b, which contains two binary

trees of root individuals of depth 2k/2. Unlike the case with K13, fully constructing

individual labels does not avoid double-exponential behavior, since the promotion of

blockable individuals to root individuals prevents blocking.

101



b

a

L R

L

L R

R

L

L R

L

L R

R

R
a

b.〈L,>, 1〉 b.〈L,>, 2〉

b.〈L,>, 2〉.〈L,>, 2〉b.〈L,>, 2〉.〈L,>, 1〉b.〈L,>, 1〉.〈L,>, 1〉 b.〈L,>, 1〉.〈L,>, 2〉

(a) A root introduction strategy for the NI-rule

a

L R

L

L R

R

b

|2k/2 − 1|

|2k/2 − 1|

(b) The resulting tree, containing a doubly-exponential
number of root individuals

102



Chapter 7

Related Work

In this chapter we describe the relationship between our work and several other well-

known reasoning techniques.

7.1 Hypertableau vs. Absorption

Absorption has been extensively used in tableau calculi to address the problems with

or-branching outlined in Section 3.2 [Horrocks, 2007]. The basic absorption algorithm

tries to rewrite GCIs into the form A v C where A is an atomic concept. After such

preprocessing, instead of deriving ¬A t C for each individual in an ABox, C(s) is

derived only if the ABox contains A(s); thus, the nondeterminism introduced by the

absorbed GCIs is localized. This basic technique has been refined and extended in

several ways. Negative absorption rewrites GCIs into the form ¬A v C where A is

an atomic concept; then, C(s) is derived only if an ABox contains ¬A(s) [Horrocks,

2007]. Role absorption rewrites GCIs into the form ∃R.> v C; then, C(s) is derived

only if an ABox contains R(s, t) [Tsarkov and Horrocks, 2004]. Binary absorption

rewrites GCIs into the form A1 u A2 v C; then, C(s) is derived only if an ABox

contains both A1(s) and A2(s) [Hudek and Weddell, 2006].

These techniques have proven indispensable in practice; however, our analysis

shows potential for further improvement. For example, the axiom ∃R.A v A from

(3.1) cannot be absorbed directly, and applying role absorption to (3.1) produces the

103



axiom ∃R.> v A t ∀R.¬A containing a disjunction in the consequent. Binary absorp-

tion is not directly applicable to (3.1) since the axiom does not contain two concepts

on the left-hand side of v, but the algorithm by Hudek and Weddell [2006] addition-

ally transforms (3.1) into an absorbable axiom A v ∀R−.A. Consider, however, the

following axiom:

> v ∀R.¬C t ∀S.D (7.1)

The binary absorption algorithm can process the two disjuncts in (7.1) in two ways.

If ∀R.¬C is processed before ∀S.D, then (7.1) is transformed into the axioms shown

in (7.2), both of which can be applied deterministically in a tableau algorithm. If,

however, ∀S.D is processed before ∀R.¬C, then (7.1) is transformed into the axioms

shown in (7.3). The first axiom is absorbable, but the second is not, so a tableau

algorithm will be nondeterministic.

C v ∀R−.Q1 Q1 v ∀S.D (7.2)

Q2 v ∀R.¬C > v D t ∀S−.Q2 (7.3)

Heuristics are used in practice to find a “good” absorption (see, e.g., [Wu and Haarslev,

2008]), but there are no guarantees that the result will incur the “least” amount of

nondeterminism; this is so even on Horn knowledge bases, for which reasoning with-

out any nondeterminism is possible in principle [Hustadt et al., 2005]. In contrast, our

algorithm is guaranteed to preprocesses a Horn knowledge base into Horn DL-clauses

that will always result in deterministic derivations. For example, (7.1) is transformed

into a Horn DL-clause (7.4).

R(x, y1) ∧ C(y1) ∧ S(x, y2)→ D(y2) (7.4)

Even in the case of inherently nondeterministic knowledge bases, absorption can

104



be further optimized. Consider axiom (7.5), which is translated into DL-clause (7.6):

> v A t ∀R.B t ∀S.C (7.5)

R(x, y1) ∧ S(x, y2)→ A(x) ∨B(y1) ∨ C(y2) (7.6)

The binary absorption algorithm transforms (7.5) into the following axioms:

Q1 uQ2 v A (7.7)

> v B t ∀R−.Q1 (7.8)

> v C t ∀S−.Q2 (7.9)

Axiom (7.7) is absorbable; however, (7.8) and (7.9) are not, so their application

introduces a nondeterministic choice point for each individual occurring in an ABox.

This problem can be ameliorated by using role absorption and transforming (7.8) and

(7.9) into (7.10) and (7.11):

∃R−.> v B t ∀R−.Q1 (7.10)

∃S−.> v C t ∀S−.Q2 (7.11)

Now (7.10) can be used to derive (B t ∀R−.Q1)(b) from R(a, b), and (7.11) can be

used to derive (C t ∀S−.Q2)(d) from S(c, d); however, these two disjunctions are

derived even if a 6= c. In contrast, the DL-clause (7.6) derives a disjunction only if

a = c; thus, literals R(x, y1) and S(x, y2) in (7.6) act as “guards.” The presence of

variables in the antecedent (the shared variable x in this example) makes the guards

more selective than if each guard were applied in isolation. Furthermore, if a = c,

we derive a disjunction A(a) ∨B(b) ∨ C(d), which involves three different individuals

(a, b, and d in this case); in contrast, consequences of tableau algorithms typically

involve just one individual. Thus, through the usage of variables, DL-clauses can be

more global in their effect than tableau rules.

105



To the best of our knowledge, no known absorption technique can localize the

effects of axioms with number restrictions, such as (7.12).

≥ 2R.B v A (7.12)

In order to ensure that only instances of B are counted, tableau algorithms need

to include a choose-rule that, for each assertion R(a, b), nondeterministically derives

B(b) or ¬B(b). In the hypertableau setting, however, (7.12) is translated into the

following DL-clause:

R(x, y1) ∧R(x, y2) ∧B(y1) ∧B(y2)→ A(x) ∨ y1 ≈ y2 (7.13)

No choose-rule is needed, as the DL-clause is simply applied to assertions of the form

R(a, b), B(b), R(a, c), and B(c); furthermore, the conclusion is a tautology whenever

b = c. The presence of “guard” atoms in the antecedent of (7.13) thus significantly

reduces the nondeterminism introduced by such number restrictions. Furthermore,

on Horn knowledge bases with number restrictions (which includes the common case

of functional roles), our calculus exhibits no nondeterminism; in contrast, tableau

calculi still need the choose-rule, which introduces nondeterminism even if all GCIs

have been fully absorbed.

The hypertableau calculus as presented in this paper does not generalize negative

absorption directly; for example, the negatively absorbed axiom (7.14) is translated

into a DL-clause (7.15) which is then applied to all individuals in an ABox.

¬A v B (7.14)

→ A(x) ∨B(x) (7.15)

Negative absorption can, however, easily be applied in our setting: to negatively

absorb an atomic concept A, we simply replace in the input ABox and the DL-clauses

all occurrences of A with ¬A′ where A′ is a fresh concept, and then move the literals

106



involving A′ to the appropriate side of DL-clauses. In our example, (7.15) would be

thus converted into (7.16), which can then be applied deterministically.

A′(x)→ B(x) (7.16)

Note that this will transform a DL-clauseA(x)→ B(x) into→ A′(x) ∨B(a); however,

a similar situation arises in tableau calculi, where applying negative absorption to

¬A v B means that A v B cannot be absorbed.

To summarize, unlike various absorption techniques that are guided primarily by

heuristics, the hypertableau calculus provides a framework that captures all variants

of absorption we are aware of, guarantees deterministic behavior whenever the input

knowledge base is Horn, eliminates the need for the nondeterministic choose-rule, and

allows for a more powerful use of “guard” atoms to further localize any remaining

nondeterminism. Furthermore, in Section 5.1.3 we show that the our calculus pro-

vides a proof-theoretic framework for DLs that can uniformly handle certain useful

extensions of SROIQ.

7.2 Relationship with Caching

Various caching optimizations can be used to reduce the sizes of the models con-

structed during knowledge base classification [Ding and Haarslev, 2006; Horrocks,

2007]. Most such optimizations operate by storing information about the roots of

some trees of blockable individuals when those trees have been fully constructed;

when a fresh individual is introduced, the cache is searched for a tree with a similar

root, and if such a tree is found then derivation rules (in particular the ≥-rule) are

not applied to the fresh individual. In the proposed approaches, caching is used in

parallel with blocking—that is, caching alone does not guarantee termination of the

calculus, and caching must be carefully integrated with blocking in order not to affect

soundness and/or completeness. This integration is particularly problematic in the

presence of inverse roles.

107



In contrast, anywhere blocking alone is sufficient to guarantee termination of the

calculus, and like caching it can avoid the construction of identical subtrees in dif-

ferent parts of a model (see Section 3.3). Furthermore, in Section 6.1 we present an

optimization of anywhere blocking that can be seen as a very simple but effective form

of general caching. Thus, anywhere blocking achieves many of the effects of caching

without much of the added complexity.

Donini and Massacci [2000] have used anywhere blocking with caching of unsatis-

fiable concepts to obtain a tableau algorithm for the DL ALC that runs in single ex-

ponential time. Goré and Nguyen [2007] have presented an algorithm for the DL SHI

that also runs in exponential time and achieves termination solely by caching both

satisfiable and unsatisfiable concepts. These algorithms, however, tend to perform

very poorly in practice. Furthermore, it is unclear how to extend these algorithms to

DLs that provide number restrictions, nominals, and inverse roles, such as SROIQ.

7.3 Relationship with First-Order Calculi

The original hypertableau calculus for first-order logic was subsequently extended

with equality and has been implemented in the KRHyper theorem prover [Baumgart-

ner et al., 2008]. The calculus can be used for finite model generation, and it decides

function-free clause logic.

Hyperresolution with splitting has been used to decide several description and

modal logics [Georgieva et al., 2003; Hustadt and Schmidt, 1999]. These approaches,

however, rely on skolemization, which, as we have discussed previously, can be in-

efficient in practice. Furthermore, these approaches deal with logics that are much

weaker than SROIQ; in particular, we are not aware of a hyperresolution-based

decision procedure that can handle inverse roles, number restrictions, and nominals.

Our hypertableau calculus is related to the Extended Positive (EP) tableau calcu-

lus for first-order logic by Bry and Torge [1998]. Instead of relying on skolemization,

108



EP satisfies existential quantifiers by introducing new constants, and this is done in a

way that makes the calculus complete for finite satisfiability. EP is, however, unlikely

to be practical due to a high degree of nondeterminism. Furthermore, EP does not

provide a decision procedure for DLs such as SROIQ that do not enjoy the finite

model property [Baader and Nutt, 2007]. Consider, for example, the knowledge base

whose TBox contains axioms (7.17) and (7.18), and whose ABox contains assertion

(7.19):

A v ∃R.A (7.17)

> v ≤ 1R−.> (7.18)

(¬A u ∃R.A)(a) (7.19)

EP will try to satisfy the existential quantifier on a by “reusing” a—that is, by adding

assertions R(a, a) and A(a). This leads to a contradiction, so EP will backtrack,

introduce a fresh individual b, and add assertions R(a, b) and A(b); to satisfy (7.17), it

will then also add ∃R.A(b). To satisfy the existential quantifier in the latter assertion,

EP will again try to “reuse” a; this will fail, so it will try to “reuse” b by adding an

assertion R(b, b). Due to (7.18), however, b will be merged into a, which results in a

contradiction; therefore, EP will backtrack, introduce yet another fresh individual c

and add the assertions R(b, c), A(c), and ∃R.A(c). By repeating the argument, it is

easy to see that EP will generate ever larger models and will not terminate. This is

unsurprising since the knowledge base is satisfied only in infinite models. To achieve

termination on such knowledge bases, EP would need to be extended with blocking

techniques such as the ones described in this paper.

Baumgartner and Schmidt [2006] developed a so-called blocking transformation

of first-order clauses, which can improve the performance of bottom-up model gen-

eration methods. Roughly speaking, the clauses are modified in a way that makes

a bottom-up calculus derive s ≈ t or s 6≈ t for each term s that is a subterm of t;

109



then, an application of paramodulation to s ≈ t achieves an effect that is analogous

to “reusing” s instead of t in the EP tableau calculus. This transformation, however,

does not ensure termination for DLs that do not have the finite model property. For

example, for the same reasons as explained in the previous paragraph, hyperresolu-

tion with splitting does not terminate on the clauses obtained by an application of

the blocking transformation to (the clauses corresponding to) (7.17)–(7.19). Further-

more, even for DLs that enjoy the finite model property, an “unlucky” sequence of

applications of derivation rules can prevent a bottom-up model generation method

with blocking from terminating (please refer to Section 3.4 for more details).

110



Part III

Classification and Retrieval

111



Chapter 8

Overview

One of the core services provided by DL reasoners is classification, the discovery of

all subsumptions between concept names occurring in a knowledge base. In fact, clas-

sification is the primary (and often the only) reasoning service exposed by ontology

engineering tools [Lutz et al., 2006]. The Protégé-OWL editor,1 for example, includes

a “Reasoning” button which performs classification. The resulting hierarchy of sub-

sumptions is used to organize concept names within all aspects of Protégé’s interface,

and the subsumptions which arise as implicit consequences of a knowledge base are

the primary mechanism authors use to check that the axioms they write are consis-

tent with their intuitions about the structure of the domain. Finally, other reasoning

services, such as explanation and query answering, typically exploit a cached version

of the classification results; classification is thus usually the first task performed by a

reasoner.

For some less expressive DLs, such as members of the EL family, it may be possible

to derive all subsumptions in a single computation [Baader et al., 2005]. In general,

however, it is necessary to “deduce” the complete set of subsumptions by performing a

number of individual subsumption tests between pairs of concepts; each such test can

be reduced to a single satisfiability/model-generation problem, which can be solved

using the techniques described in Part II.

1http://protege.stanford.edu/overview/protege-owl.html

112

http://protege.stanford.edu/overview/protege-owl.html


In Chapter 9, we present a novel algorithm which can greatly reduce the number

of subsumption tests needed to classify a set of concepts. Our algorithm is also able

to exploit partial information about the subsumption relation—for example, the set

of subsumptions which are explicitly stated in the knowledge base—to further reduce

the number of tests. Chapter 10 describes techniques for extracting such partial in-

formation from data generated in the course of model generation. Together, these

techniques generalize and extend a wide range of commonly-implemented classifica-

tion optimizations.

8.1 Difficulties

For a set of n concepts, there are a total of n2 possible subsumptions, thus a näıve

representation of classification results can require large amounts of storage. Most

systems exploit the transitivity of subsumption and store only the “most specific”

subsumers and “most general” subsumees of each classified concept; we call such a

compressed representation a taxonomy. A taxonomy lends itself to representation as

a graph or tree, often called a subsumption hierarchy.

It is clear that a set of n concepts can be classified by simply performing all

n2 individual subsumption tests, but for the tree-shaped subsumption hierarchies

typically found in realistic knowledge bases much better results can be achieved using

algorithms that construct the taxonomy incrementally. Concepts are inserted into

the taxonomy one by one, and the correct location for each is found by traversing

the partially-constructed hierarchy, performing subsumption tests as each node of the

graph is visited.

This kind of algorithm suffers from two main difficulties. First, individual sub-

sumption tests can be computationally expensive—for some complex knowledge bases,

even state-of-the-art reasoners may take a long time to perform a single test. Second,

even when subsumption tests themselves are cheap, a knowledge base containing a

113



very large number of concept names will obviously result in a very large taxonomy,

and repeatedly traversing this structure can be costly. This latter problem is partic-

ularly acute for the relatively flat (i.e., broad and shallow) tree-shaped hierarchies

often found in large biomedical knowledge bases. In general, subsumption tests must

be performed between every pair of concept names with the same direct subsumer(s),

thus broad hierarchies require many such tests. These two difficulties clearly interact:

large numbers of concept names require large numbers of subsumption tests, each of

which can be expensive.

The first difficulty is usually addressed by using an optimized construction that

tries to minimize the number of subsumption tests performed in order to construct

the taxonomy. Most implemented systems use an “enhanced traversal” algorithm

due to Ellis [1991] and to Baader et al. [1994] which adds concept names to the

taxonomy one at a time using a two-phase strategy. In the first phase, the most

specific subsumers of a concept C are found using a top-down breadth-first search

of the partially-constructed taxonomy. In this phase, subtrees of non-subsumers of

C are not traversed, which significantly reduces the number of tests performed. The

second phase finds the most general subsumees of C using a bottom-up search in a

similar way. The algorithm exploits the structure of the knowledge base to identify

“obvious” subsumers (so-called told-subsumers) of each concept name, and uses this

information in a heuristic that chooses the order in which concepts are added, the

goal being to construct the taxonomy top-down; it also exploits information from the

top-down search in order to prune the bottom-up search.2

The second difficulty can be addressed by optimizations that try to identify a

subset of the concept names for which complete information about the subsumption

relation can be deduced without performing any individual subsumption tests. This

can be achieved, e.g., by identifying completely-defined concept names [Tsarkov et

2Other optimizations can be used to decrease the cost of individual subsumption tests (see,
e.g., [Tsarkov et al., 2007]), but these techniques are largely orthogonal to classification optimizations.

114



al., 2007]—those between which only structurally-obvious subsumptions hold, or by

applying structural subsumption algorithms to inexpressive fragments of the knowl-

edge base [Möller et al., 2008]. Having constructed part of the taxonomy using such

techniques, the remaining concept names can be added using the standard enhanced-

traversal algorithm.

8.2 Algorithm Summary

Chapters 9 and 10 together present a new classification algorithm that generalizes

and refines the above techniques. Our approach is based on maintaining, and incre-

mentally extending, two sorts of information: a set of pairs of concepts A and B

such that we know that A is subsumed by B (the known subsumptions), and a set of

pairs of concepts such that we know that A is not subsumed by B (the known non-

subsumptions). The key insight is that information from these two sets can often be

combined to derive new information. For example, if we know that A is subsumed by

B , and that A is not subsumed by C , then we can conclude that B is not subsumed

by C . In Section 9.2 we show how to derive the largest possible set of such inferences.

Our classification algorithm, described in Chapter 9, is straightforward: at each

stage we pick a pair of concepts 〈A,B〉 which does not appear in either the set of

known subsumptions or the set of known non-subsumptions, perform a subsumption

test between the two, and use the result of the test to further extend the sets of known

subsumptions and non-subsumptions. Each such test adds at least one pair to one of

the sets (i.e. 〈A,B〉 itself). Eventually, every possible pair of concepts is present in

one set or the other, and the set of known subsumptions is equal to the subsumption

relation.

An important advantage of our algorithm is that the initial sets of known (non-)

subsumptions may be empty, may include partial information about all concepts,

and/or may include complete information about some concepts; in all cases the in-

115



formation is maximally exploited. Such information can be derived from a variety of

sources, ranging from syntactic analysis of the knowledge base to existing classifica-

tion results for a subset of concept names from the knowledge base (e.g. independent

modules or classified sub- or super-sets of the KB) to data derived in the course of

reasoning.

In Chapter 10 we show how the models constructed by (hyper)tableau-based rea-

soners in the course of subsumption and satisfiability testing can be used as sources

of partial information about the subsumption relation. For example, if a reasoner

produces a model containing an individual which is a member of both the concept

A and the complement (negation) of the concept B , then A is clearly not subsumed

by B ; more sophisticated analysis based on the dependency tracking structures typ-

ically maintained by tableau reasoners also allows detection of subsumptions. The

models generated by tableau reasoners are typically very rich sources for this type

of information; in fact, for knowledge bases which do not result in nondeterminism,

including all Horn-SHIQ (and thus all EL) knowledge bases, the model constructed

by a hypertableau-based reasoner when checking the satisfiability of a concept A will

contain sufficient information to determine if A is (not) subsumed by B for all concept

names B occurring in the knowledge base.

Our approach to partial-information derivation provides an efficient generaliza-

tion of the told-subsumer and completely-defined optimizations, both of which derive

partial information from structural analysis of the knowledge base. When the known

(non-)subsumption information is incomplete, our algorithm incrementally computes

additional (non-)subsumption relationships, and maximally exploits the resulting in-

formation to refine the sets of known and possible subsumers; this can be seen as a

generalization of the search-pruning optimizations introduced by Baader et al. [1994].

116



Chapter 9

Deducing a Quasi-Ordering

In this chapter we present a general-purpose algorithm for deducing a quasi-ordering

by testing whether pairs of elements are members of that ordering. Section 9.2 de-

scribes how partial information about the ordering can be maximally exploited to

avoid redundant tests, and Section 9.3 presents both pseudocode for propagating in-

formation from a single test based on this technique, as well as two different algorithms

for combining tests to deduce a quasi-ordering: one general-purpose algorithm, and

one algorithm based on heuristics derived from properties common to quasi-orderings

representing subsumption relations. Section 9.4 provides an example of applying the

latter of these algorithms.

9.1 Preliminaries

We first introduce some notation and definitions that will be useful in what follows.

Given a set of elements U = {a, b, c, ...}, let R be a binary relation over U , i.e., a

subset of U × U . We say that there is a path from a to b in R if there exist elements

c0, ..., cn ∈ U such that n > 0, c0 = a, cn = b, and 〈ci, ci+1〉 ∈ R for all 0 ≤ i < n.

The transitive closure of R is the relation R+ such that 〈a, b〉 ∈ R+ iff there is a path

from a to b in R. The transitive-reflexive closure R∗ of R is the transitive closure of

the reflexive extension of R, i.e. R+ ∪ {〈a, a〉 | a ∈ U}.

117



A binary relation is a quasi-ordering if it is both reflexive and transitive. Clearly,

the subsumption relation on a set of concepts is a quasi-ordering. Note, however, that

it is not a partial-ordering, because it is not antisymmetric: A v B and B v A does

not imply that A = B (i.e. semantically equivalent concepts may be syntactically

distinct).

The restriction of a relationR to a subsetD of U is the relationR[D] = R ∩ (D ×D).

All restrictions of a reflexive relation are reflexive, and all restrictions of a transitive

relation are transitive; thus, a restriction of a quasi-ordering is itself a quasi-ordering.

Further, if R ⊆ S for relations R and S, then R[D] ⊆ S[D] for all D ⊆ U .

Given a universe U , a quasi-ordering R over U , and a finite set of elements D ⊆ U ,

we consider the problem of computing the restriction R[D] via tests of the form

〈a, b〉 ∈?R. If U is the set of (arbitrary) concept expressions which can be represented

in logic L, R is the subsumption relation over U , and D is the set of concept names

occurring in a knowledge base K written in language L, then computing R[D] is

equivalent to classifying K, and the relevant tests are subsumption tests.

We assume that we begin with partial information about R: we are provided with

a set K = {〈a0, b0〉, ..., 〈am, bm〉} where 〈ai, bi〉 ∈ R for 0 ≤ i ≤ m, and also with a

set Kneg = {〈c0, d0〉, ..., 〈cn, dn〉} where 〈ci, di〉 6∈ R for 0 ≤ i ≤ n. We call the set K

the known portion of R. For ease of presentation, we do not operate on the set Kneg

directly; our presentation instead refers to its complement U × U \ Kneg, which we

denote by P and call the possible portion of R. It is thus the case that K ⊆ R ⊆ P .

If no partial information is available, then K = ∅ and P = U × U .

We can use the result of each test 〈a, b〉 ∈?R to further refine the bounds on R by

either adding 〈a, b〉 to K or removing it from P ; eventually K[D] = R[D] = P [D].

We next show, however, that the bounds on R can sometimes be refined without

performing additional tests by combining information from K and P .

118



a

b

c

d

only if

only if

(a) Simple cases

u′

u v

v′

only if

(b) General case

Figure 9.1: Eliminating possible edges: if the solid edges are known to be in quasi-
ordering R, then the gray edges can be in R only if the indicated dashed edges are in
R.

9.2 Maximizing Partial Information

The key to minimizing the number of explicit tests required to discover R[D] is

maximizing the information gained from K and P . To do so, we exploit the knowledge

that R is a quasi-ordering. In this case, K ⊆ R obviously implies that K∗ ⊆ R, so

we can use K∗ to obtain a tighter lower bound on R. Less obvious is the fact that we

can also obtain a tighter upper bound on R by identifying tuples in P which are not

consistent with K and the transitivity of R.

For example, consider the case shown in Figure 9.1a. If we know that b is a

successor of a in R (i.e., 〈a, b〉 ∈ K), then an element c can be a successor of b only if

it is also a successor of a (if 〈a, c〉 6∈ P then 〈b, c〉 6∈ R). Further, a can be a successor

of an element d only if b is also a successor of d.

Both of these examples are special cases of the structure shown in Figure 9.1b: if

u is a successor of u′ and v′ is a successor of v, then an edge from u to v would form a

path all the way from u′ to v′, requiring v′ to be a successor of u′. Since R is reflexive

we can choose u′ = u or v = v′ to see that v can be a successor of u only if v is a

successor of u′ and v′ is also a successor of u. We use this to formalize a subset bP cK

of P , and show that bP cK is the tightest possible upper bound on R.

Definition 20 Let K and P denote two relations such that K∗ ⊆ P . We define the

119



reduction bP cK of P due to K as follows:

bP cK = P ∩ {〈u, v〉 | ∀u′, v′ : {〈u′, u〉, 〈v, v′〉} ⊆ K∗ → 〈u′, v′〉 ∈ P} 4

We now show that bP cK is the tightest possible upper bound on R.

Lemma 16 Let K and P denote two relations such that K∗ ⊆ P . (i) For all quasi-

orders R such that K ⊆ R ⊆ P , it is the case that R ⊆ bP cK. (ii) Let S be a proper

subrelation of bP cK. Then there exists a quasi-ordering R such that K ⊆ R ⊆ P and

R 6⊆ S; i.e. bP cK is minimal.

Proof (i) Let 〈u, v〉 be a tuple in R. For every u′, v′ such that {〈u′, u〉, 〈v, v′〉} ⊆ K∗,

K∗ ⊆ R implies that {〈u′, u〉, 〈v, v′〉} ⊆ R. Because R is transitive and 〈u, v〉 ∈ R,

it must also be the case that 〈u′, v′〉 ∈ R and thus that 〈u′, v′〉 ∈ P . Consequently,

〈u, v〉 ∈ bP cK , so R ⊆ bP cK .

(ii) Choose elements a and b such that 〈a, b〉 ∈ bP cK but 〈a, b〉 6∈ S. Let R be the

transitive-reflexive closure of the relation K ∪ {〈a, b〉}. Clearly K ⊆ R and R 6⊆ S.

Let 〈u, v〉 be any tuple in R. There are three cases:

1. 〈u, v〉 = 〈a, b〉. Then 〈u, v〉 ∈ P since 〈a, b〉 ∈ bP cK and bP cK ⊆ P .

2. 〈u, v〉 ∈ K+. Then 〈u, v〉 ∈ P since K∗ ⊆ P .

3. 〈u, a〉 ∈ K∗ and 〈b, v〉 ∈ K+. Then 〈u, v〉 ∈ P since 〈a, b〉 ∈ bP cK .

For any tuple 〈u, v〉 ∈ R, it is the case that 〈u, v〉 ∈ P , thus K ⊆ R ⊆ P and

R 6⊆ S. �

Note that bP cK itself is not necessarily transitive: given three elements a, b, and

c and the relation P = {〈a, a〉, 〈b, b〉, 〈c, c〉, 〈a, b〉, 〈b, c〉}, it is the case that bP c∅ = P .

Of course no transitive subrelation R of P contains both 〈a, b〉 and 〈b, c〉.

120



9.3 Taxonomy Construction and Searching

As described in Section 9.2, given relations K and P such that K ⊆ R ⊆ P for

some unknown quasi-ordering R, a tuple 〈a, b〉 is an element of R if 〈a, b〉 ∈ K∗, and

〈a, b〉 is not an element of R if 〈a, b〉 6∈ bP cK ; the only “unknown” elements of R

are the tuples in bP cK \K∗. Further, if 〈a, b〉 ∈ bP cK \K∗, then a test of the form

〈a, b〉 ∈?R provides additional information which can be used to extend K or restrict

P . This suggests the following simple procedure for deducing the restriction R[D] of

a quasi-ordering R to domain D:

Compute-Ordering(K,P,D)

1 while K∗[D] 6= bP cK [D]
2 do choose some a, b ∈ D such that 〈a, b〉 ∈ bP cK \K∗
3 if 〈a, b〉 ∈?R then add 〈a, b〉 to K
4 else remove 〈a, b〉 from P
5 return K[D]

Completely recomputing K∗ and bP cK in each iteration of the above loop is

clearly inefficient. Practical implementations would instead maintain both relations

and update them as P and K change. Techniques for updating the transitive-reflexive

closure of a relation are well-known [Cormen et al., 2001; La Poutré and van Leeuwen,

1988]; we provide below a näıve algorithm that, given bP cK , K ′ ⊇ K and P ′ ⊆ P ,

computes an updated relation bP ′cK′ .

The algorithm exploits the technique for eliminating edges that was described in

Section 9.2 and Figure 9.1b: it removes a tuple 〈u, v〉 from the set of possible tuples

bP cK when adding it to the set of known tuples K ′ would imply, due to the transitivity

of R, that some other tuple would be at the same time both known (i.e., in K ′) and

not possible (i.e., not in bP ′cK′). This is done incrementally by considering tuples

that have either become known (i.e., are in K ′ \K) or been shown to be impossible

(i.e., are in bP cK \ P ′).

121



First, bP cK is copied to bP ′cK′ . Then, in lines 2–4, each tuple 〈u′, v′〉 that has

been shown to be impossible is considered and, if there are tuples 〈u′, u〉 and 〈v, v′〉

in K ′, then 〈u, v〉 is clearly not possible either (it would imply that 〈u′, v′〉 is not only

possible but known) and so is removed from bP cK . Next, in lines 5–13, each tuple

〈x, y〉 that has become known is considered. There are two possible cases: one where

x, y correspond to u′, u in Figure 9.1b, and one where they correspond to v, v′. Lines

6–9 deal with the first case: if there are tuples 〈u, v〉 in bP cK and 〈v, v′〉 in K ′, but

〈u′, v′〉 is not in P ′, then 〈u, v〉 is clearly not possible (it would imply that 〈u′, v′〉 is

not only possible but known) and so is removed from bP cK . Lines 10–13 deal similarly

with the second case: if there are tuples 〈u, v〉 in bP cK and 〈u′, u〉 in K ′, but 〈u′, v′〉

is not in P ′, then 〈u, v〉 is removed from bP cK .

Prune-Possibles(bP cK , K, P ′, K ′)

1 bP ′cK′ ← bP cK
2 for each 〈u′, v′〉 ∈ bP cK \ P ′
3 do for each u, v such that 〈u′, u〉 ∈ K ′ and 〈v, v′〉 ∈ K ′
4 do remove 〈u, v〉 from bP ′cK′
5 for each 〈x, y〉 ∈ K ′ \K
6 do let u′ ← x and u← y
7 for each v such that 〈u, v〉 ∈ bP cK
8 do if there exists v′ such that 〈v, v′〉 ∈ K ′ and 〈u′, v′〉 6∈ P ′
9 then remove 〈u, v〉 from bP ′cK′

10 let v ← x and v′ ← y
11 do for each u such that 〈u, v〉 ∈ bP cK
12 do if there exists u′ such that 〈u′, u〉 ∈ K ′ and 〈u′, v′〉 6∈ P ′
13 then remove 〈u, v〉 from bP ′cK′
14 return bP ′cK′

In the case where no information about the quasi-ordering R[D] is available other

than K and P , the Compute-Ordering procedure performs well. In many cases,

however, some general properties of R[D] can be assumed. In the case where R rep-

resents the subsumption relation between concept expressions, for example, R[D] is

typically much smaller than D ×D (i.e., subsumptions occur between relatively few

122



pairs of concept names). In such cases, it is beneficial to use heuristics that exploit the

(assumed) properties of R[D] when choosing a and b in line 2 of the above procedure.

We summarize below a variant of Compute-Ordering which performs well

when the restriction to be computed is treelike in structure and little information

about the ordering is available in advance. This procedure is designed to perform

individual tests in an order similar to the enhanced traversal algorithm; however, it

minimizes the number of individual tests performed by maximally exploiting partial

information.

The algorithm chooses an element of a ∈ D for which complete information about

R[D] is not yet known. It identifies the subset V ↑ ⊆ D of elements b for which

〈a, b〉 ∈ R, and the subset V ↓ ⊆ D of elements b for which 〈b, a〉 ∈ R, updating

K and P accordingly. In order to compute these sets efficiently, we make use of the

subroutines Successors and Predecessors, which perform the actual tests. The

Successors and Predecessors functions are derived from the enhanced traversal

algorithm: they perform a breadth-first search of the transitive reduction K� of the

known subsumptions K—the smallest relation whose transitive closure is K∗. In order

to avoid the cost of repeated traversals of K�, we restrict the searches to, respectively,

the possible successors and predecessors of a. We omit the details of these search

routines for the sake of brevity.

Compute-Ordering-2(K,P,D)

1 while K∗[D] 6= bP cK [D]
2 do choose some a, x ∈ D s.t. 〈a, x〉 ∈ bP cK \K∗ or 〈x, a〉 ∈ bP cK \K∗
3 let B be the possible successors of a, i.e. D ∩ {b | 〈a, b〉 ∈ bP cK \K∗}
4 if B 6= ∅ then V ↑ ← Successors(a,K�[B])
5 add 〈a, b〉 to K for every element b of V ↑

6 remove 〈a, b〉 from P for every element b of B \ V ↑
7 let B be the possible predecessors of a, i.e. D ∩ {b | 〈b, a〉 ∈ bP cK \K∗}
8 if B 6= ∅ then V ↓ ← Predecessors(a,K�[B])
9 add 〈b, a〉 to K for every element b of V ↓

10 remove 〈b, a〉 from P for every element b of B \ V ↓
11 return K[D]

123



9.4 Example

Consider the process of using Compute-Ordering-2 to discover the subsump-

tion relation {〈a, a〉, 〈b, a〉, 〈b, b〉, 〈c, a〉, 〈c, c〉, 〈d, a〉, 〈d, b〉, 〈d, d〉} with no initial par-

tial information available. We initialize K to {〈a, a〉〈b, b〉, 〈c, c〉, 〈d, d〉} and P to

{a, b, c, d} × {a, b, c, d}; this situation is shown in the left diagram of Figure 9.2.

Each element appears in a tuple occurring in K∗ \ bP cK , so on the first execu-

tion of line 2 of Compute-Ordering-2 we are free to choose any element; as-

sume that we choose d. Then Successors performs the tests dv? a, dv? b, and

dv? c (discovering that a and b are the only successors of d), we add 〈a, d〉 and

〈b, d〉 to K, and we remove 〈c, d〉 from P . Predecessors performs the tests av? d,

bv? d, and cv? d (discovering that d has no predecessors), and we remove each of

〈a, d〉, 〈b, d〉, and 〈c, d〉 from P . Further, because d v a but d 6v c, we can conclude

that a 6v c; similar reasoning shows that b 6v d; bP cK is thus restricted to the set

{〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉, 〈c, a〉, 〈c, b〉, 〈c, c〉, 〈d, a〉, 〈d, b〉, 〈d, d〉}. The states of K∗ and

bP cK at this point are shown in the left-center diagram of Figure 9.2.

In the next iteration through the Compute-Ordering-2 loop we cannot choose

d since it does not occur in any tuple of K∗ \ bP cK ; assume that we instead choose

b. The only possible successor of b is a, so Successors searches this one-element

subgraph by performing the single test bv? a (which returns true), and we add 〈b, a〉

to K. The element d is already known to be a predecessor of b, so Predecessors

searches the subgraph K�[{a, c}] by performing the tests av? b and cv? b, finding no

predecessors, and the two corresponding tuples are removed from P . The states of

K∗ and bP cK are shown in the right-center diagram of Figure 9.2.

After two iterations, the setK∗\bP cK contains only the pair 〈c, a〉; if we choose c in

the next iteration then Successors tests cv? a, we add 〈c, a〉 to K, and K∗ = bP cK .

The final subsumption relation is given by K∗ and is shown in the right-hand diagram

of Figure 9.2.

124



a b

c d

a b

c d

a b

c d

a b

c d

classify d

(6 tests)

classify b

(3 tests)

classify c

(1 test)

Figure 9.2: As classification proceeds, known edges (denoted by solid black arrows)
are discovered, and possible edges (denoted by dotted gray arrows) are eliminated.

Compute-Ordering-2 thus classifies this knowledge base using 10 subsumption

tests instead of the 16 required by a näıve brute-force approach. Note, however, that

the results of the seven tests av? c, av? d, bv? a, bv? d, cv? a, cv? b, and dv? b

are sufficient to extend K and restrict P such that K∗ = bP cK , providing a full

classification for this ontology. Identifying such a minimal set of tests is, however,

extremely difficult without prior knowledge of the final taxonomy.

125



Chapter 10

Extracting Subsumption
Information From Models

We next turn our attention to the specific case of identifying all subsumptions between

the concept names occurring in a knowledge base K. Instead of treating a reasoning

service as an oracle that answers boolean queries of the form “is A subsumed by B

w.r.t. K?” (which we will write K |=? AvB), we consider how information generated

internally by common reasoning algorithms can be exploited to discover information

about the subsumption quasi-ordering.

10.1 Identifying Non-Subsumptions

Most modern reasoners for Description Logics, including HermiT [Shearer et al., 2008],

Pellet [Parsia and Sirin, 2004], and FaCT++ [Tsarkov and Horrocks, 2006], transpose

subsumption queries into consistency tests. In particular, to determine if K |= Av⊥,

these reasoners test whether the knowledge base K∪ {A(a)} is consistent, where a is

a fresh individual not appearing in K.

All of the above reasoners perform such consistency tests by trying to construct

(an abstraction of) a model of the knowledge base. We begin by summarizing the

semantics of interpretations and models from Definition 1 and Definition 4.

Given sets of atomic concepts NC , atomic roles NR and individuals NI , an inter-

pretation I = (∆I , ·I) consists of a nonempty set ∆I and an interpretation function

126



·I which maps every element of NC to a subset of ∆I , every element of NR to a

subset of ∆I ×∆I and every element of NI to an element of ∆I ; the interpretation

function is further extended to all concepts constructed from NC , NR, and NI . An

interpretation I is a model of an axiom A v B if AI ⊆ BI (similar definitions hold

for other kinds of statement); it is a model of a knowledge base K if it models every

statement in K. We now introduce two further notions related to models.

Definition 21 Let A and B be concepts. A model I of K is a witness for the sat-

isfiability of A w.r.t. K if AI is nonempty; it is a witness for the non-subsumption

A 6v B w.r.t. K if AI 6⊆ BI , i.e., if there exists i ∈ ∆I s.t. i ∈ AI and i 6∈ BI . 4

One method for finding a model of a knowledge base, if such a model exists, is

detailed in Part II of this thesis, however other model-construction methods exist,

including the more traditional tableau algorithms used by Pellet and FaCT++. All

of these procedures typically represent the model being constructed as an ABox, i.e.,

as a set of assertions of the form C(x) and R(x, y) for individuals x, y, concepts

C, and roles R. For logics which can induce infinite models, reasoners implicitly

depend upon an unraveling theory which describes the relationship between the ABox

constructed and a model. The unraveling for the calculus given in Part II is detailed in

Definition 15, but most unravelings provide similarly straightforward interpretation of

the vast majority of assertions within an ABox: an ABox containing the assertion C(x)

represents a model in which xI ∈ CI . To construct a witness for the satisfiability of a

concept A, tableau reasoners initialize the ABox with an assertion A(x) and perform

ABox construction in a goal-directed manner by adding further assertions only as

necessary in order to ensure that the ABox represents a model of K.

Assuming that the construction is successful, the resulting ABox/model provides

a rich source of information. For example, for any concepts A and B such that A(x)

and (¬B)(x) are both in the ABox, it is the case that xI ∈ AI and xI 6∈ BI ;

127



thus the model is a witness for the non-subsumption K |= A 6vB. In many tableau

settings, the non-presence of B(x) in the ABox is sufficient to conclude the relevant

non-subsumption; in fact, when using a hypertableau algorithm, this is always the

case.1 We formalize the detection of non-subsumptions in the hypertableau setting as

follows.

Lemma 17 Let K be a knowledge base, and (T, λ) a derivation for K as given by

Definition 13. If there exists a clash-free ABox A such that λ(t) = A for leaf t of

T , and A(x) ∈ A and B(x) 6∈ A for B an atomic concept, A any concept, and x an

individual which is not indirectly blocked in A, then K 6|= A v B.

Proof Let I = (∆I , ·I) be the interpretation given by applying the unravelling spec-

ified by Definition 15 to A. Then xI ∈ AI and xI 6∈ BI . By Lemma 11, I is a model

of K, so K 6|= A v B. �

The goal-directed nature of the ABox construction used by the hypertableau cal-

culus (and other common tableau calculi) means that the ABoxes constructed are

typically quite small. As a result, these ABoxes tend to be extremely rich in non-

subsumption information: in a typical witness for the satisfiability of A, i.e., a model

I of K with i ∈ AI , there will be relatively few other concept names B such that

i ∈ BI , and thus I will identify the vast majority of concept names in K as non-

subsumers of A. For this reason, it is almost always more efficient to record the set

PA = {B | i ∈ AI and i ∈ BI for some i} of “possible subsumers” of A.

10.2 Identifying Subsumptions

While single models allow us to detect non-subsumptions, additional information

about the space of possible models is required in order to identify subsumption re-

1 Traditional tableau algorithms sometimes employ an optimization called negative absorption
[Horrocks, 2007], which complicates the way in which conclusions can be drawn from the non-presence
of assertions. In such cases, consulting not only the ABox but also the absorption data used during
its construction is necessary to extract such information.

128



lationships. Sound and complete tableau reasoning algorithms systematically explore

the space of all “canonical” models (typically tree- or forest-shaped models), on the

basis that, if any model exists, then one of these canonical models also exists; our

formalization in Part II characterizes this space as a derivation—a tree whose nodes

are labeled by ABoxes—as given by Definition 13. In particular, when K includes

disjunctions or other sources of nondeterminism, it may be necessary to choose be-

tween several possible ways of modeling such statements, and to backtrack and try

other possible choices if the construction fails; i.e. the path first traversed through

a derivation tree might lead to a clash, and other branches from that path must be

explored.

For such algorithms, it is usually easy to show that, if the ABox was initialized with

A(x), the construction did not involve any nondeterministic choices (the derivation is

linear), and the resulting ABox includes the assertion B(x), then it is the case that

in any model I of K, i ∈ AI implies i ∈ BI , i.e., that K |= AvB. Moreover, as

we have already seen in Section 10.1, such an ABox is (at least in the hypertableau

case) a witness to the non-subsumption K |= A 6vC for all concept names C such

that C(x) is not in the ABox. Thus, when testing the satisfiability of a concept A,

it may be possible to derive complete information about the subsumers of A. Again,

we formalize the detection of subsumptions only for the case of the hypertableau

calculus.

Lemma 18 Let K be a knowledge base, and (T, λ) a derivation for K as given by

Definition 13. If an individual a occurs in K only in a single assertion of the form

A(a), and for every leaf t of T it is the case that either B(a) ∈ λ(t) or λ(t) contains

a clash, then K |= A v B.

Proof Assume that K 6|= A v B. Then there exists some model I = (∆I , ·I) of K

such that i ∈ AI and i 6∈ BI for some i ∈ ∆I . We construct the knowledge base

129



K′ = K∪{A(a′),¬B(a′)} with a′ a fresh individual not occurring in K. By extending

I such that a′I = i we produce a model for K′, so K′ is consistent. Further, the

knowledge base K′′ = K′ \ {A(a)} is also consistent by monotonicity. The individual

a no longer occurs in K′′, so we are free to replace a′ with a in all assertions of K′′ to

produce the consistent knowledge base K′′′.

Finally, we construct a new tree T ′ by extending T with a new child t′ for every

leaf t of T such that λ(t) is clash-free, and a new labeling function λ′ such that

λ′(t) = λ(t)∪{¬B(a)} for every node t in T , and λ′(t) = λ(t′)∪{¬B(a),⊥} for every

fresh leaf t, where t′ is the parent of t. It is easy to see that (T ′, λ′) is a derivation

for K′′′: since K ⊂ K′′′, every rule applicable to (T, λ) and K is also applicable to

(T ′, λ′) and K′′′, and for each leaf t of T such that λ(t) is clash-free, the Hyp-rule can

be applied to the clause B(x) ∧ ¬B(x) → ⊥ with mapping σ such that σ(x) = a.

Thus K′′′ is consistent, but there exists a derivation for K′′′ containing no clash-free

branches; this contradicts Lemma 10. �

The hypertableau calculus is designed to reduce nondeterminism, and avoids it

completely when dealing with Horn-SHIQ ontologies; for such ontologies it is thus

able to derive complete information about the subsumers of a concept A using a

single satisfiability test, which constructs an entire (linear) derivation tree. This allows

a hypertableau reasoner to derive all relevant subsumption relationships in a Horn

ontology as a side effect of performing satisfiability tests on each of the concept names.

This idea can be extended so as to also derive useful information from nondeter-

ministic constructions by exploiting the dependency labeling typically used to enable

“dependency-directed backtracking”—an optimization which reduces the effects of

nondeterminism in reasoning [Horrocks, 1997]. In the resulting ABoxes, each asser-

tion is labelled with the set of choices among derivation branches on which it depends.

An empty label indicates that the relevant assertion is present in all branches of the

derivation, regardless of any choices made during the construction process. Thus, if

130



the ABox is initialized with A(x), an empty-labelled assertion B(x) in the resulting

ABox can be treated in the same way as if the construction had been completely de-

terministic. Performing a satisfiability test on A may, therefore, allow some subsumers

of A to be identified even when nondeterministic choices are made during reasoning.

In practice, almost all of the actual subsumers of A can usually be identified in this

way.

It is easy to see that this idea is closely related to, and largely generalizes, the

told subsumer and completely-defined optimizations described in Section 8.1. For a

completely defined concept name A, a satisfiability test on A will be deterministic (and

typically rather trivial), and so will provide complete information about the subsumers

of A. Similarly, if B is a told subsumer of A, then an ABox initialized with A(x) will

always produce B(x), and almost always deterministically. (It is theoretically possible

that B(x) will be added first due to some nondeterministic axiom in the ontology).

131



Chapter 11

Related Work

Computing a quasi- (or partial-) ordering for a set of n incomparable elements clearly

requires n2 individual tests in the worst case—näıvely comparing all pairs is thus

“optimal” by the simplest standard. The literature therefore focuses on a slightly more

sophisticated metric which considers both the number of elements in the ordering as

well as the width of the ordering—the maximum size of a set of mutually incomparable

elements. Faigle and Turán [1985] have shown that the number of comparisons needed

to deduce an ordering of n elements with width w is at most O(wn log(n/w)) and

Daskalakis et al. provide an algorithm which approaches this bound by executing

O(n(w + log n)) comparisons [2007]. Taxonomies, however, tend to resemble trees in

structure, and the width of a subsumption ordering of n elements is generally close

to n/2. Further, the algorithms of Faigle and Turán as well as Daskalakis et al. rely

on data structures which require O(nw) storage space even in the best case, and thus

exhibit quadratic performance when constructing a taxonomy.

A taxonomy-construction strategy which performs well for tree-like relations is

described by Ellis [1991]: elements are inserted into the taxonomy one at a time by

finding, for each element, its subsumers using a breadth-first search of all previously-

inserted elements top-down, and then its subsumees using a breadth-first search

bottom-up. Baader et al. further refine this technique to avoid redundant subsump-

tion tests during each search phase: during the top search phrase, a test K |=? AvB

132



is performed only if K |= AvC for all subsumers C of B [1994]. This can be seen as

a special case of our bP cK pruning of possible subsumers, with the restriction that it

only applies to subsumption tests performed in a prescribed order.

The traversal algorithms described by Ellis and by Baader et al. perform sub-

sumption tests between every pair of siblings in the final taxonomy. Such algorithms

are thus very inefficient for taxonomies containing nodes with large numbers of chil-

dren; completely flat taxonomies result in a quadratic number of subsumption tests.

Haarslev and Möller propose a way to avoid the inefficiencies of these traversals by

clustering a group of siblings A1, ..., An by adding the concept
d

1≤i≤nAi to the taxon-

omy [2001a]. Our approach can easily incorporate this technique by including partial

or complete information about such new concepts in K and P . In practice, how-

ever, the partial information extracted from tableau models almost always includes

non-subsumptions between siblings in such flat hierarchies, so these refinements are

unnecessary.

Baader et al. also describe techniques for identifying subsumers without the need

for multiple subsumption tests by analyzing the syntax of concept expressions in an

knowledge base: if a KB contains an axiom of the form A v BuC where A and B are

atomic concepts, then B is a “told subsumer” of A, as are all the told subsumers of B.

The simplification and absorption techniques described by Horrocks [1997] increase

the applicability of such analysis. Haarslev et al. further extend this analysis to detect

non-subsumption: an axiom of the form A v ¬B u C implies that A and B are dis-

joint, thus neither atomic concept subsumes the other (unless both are unsatisfiable)

[2001a]. Tsarkov et al. describe a technique for precisely determining the subsumption

relationships between “completely defined concepts”—atomic concepts whose defini-

tions contain only conjunctions of other completely defined concepts [2007]. These

optimizations can be seen as special cases of (non-)subsumption information being

derived from (possibly incomplete) calculi as described in Chapter 10.

133



Part IV

Evaluation

134



Chapter 12

Empirical Results

Based on the techniques described in this thesis, we have implemented a prototype

DL reasoner called HermiT.1 In order to estimate how well our approach performs in

practice, we have compared HermiT with two state-of-the-art tableau reasoners on

several practical problems. The objective of this evaluation was not to establish the

superiority of HermiT, but rather to compare the behavior of various novel aspects of

our approach with that of the traditional algorithms used in many existing systems,

and to demonstrate the usefulness of our calculus on realistic problems. As such,

we have structured our testing to try to isolate the performance impacts of different

optimizations.

12.1 Reasoning Performance

In this section, we focus specifically on the performance of the hypertableau reason-

ing calculus described in Part II. It is important to understand that HermiT is a

prototype, and as such does not always outperform the well-established reasoners.

In particular, HermiT may be uncompetitive on ontologies where specialized opti-

mizations are needed for good performance. For example, HermiT cannot process

the SNOMED CT ontology due to the very large number of concepts, while many

other reasoners can classify the ontology easily. These reasoners, however, employ

1 http://hermit-reasoner.com/

135

http://hermit-reasoner.com/


techniques that are quite different from the standard tableau algorithm. For exam-

ple, on an EL++ ontology such as SNOMED CT, Pellet uses the reasoning algorithm

by Baader et al. [2005], and other reasoners employ specialized techniques as well

[Haarslev et al., 2008].

In an attempt to focus on core reasoning performance, we have not made use of

the advanced classification techniques from Part III, applying only the technique

for extracting partial information from models from Chapter 10 to cache results

of subsumption tests in cases where reasoning is entirely deterministic. We hoped

that this would approximate an optimization present in both of the other reasoners

which avoids true subsumption tests by caching pseudo-models [Haarslev et al., 2001a;

Horrocks, 1997]; this is discussed further in Section 12.1.3. Empirical evaluation of

the techniques from Part III is deferred to Section 12.2.

Similarly, artificial test problems such as those used in the TANCS comparison at

the Tableaux’98 conference [Balsiger and Heuerding, 1998; Balsiger et al., 2000] and

the DL’98 workshop [Horrocks and Patel-Schneider, 1998b] are often either easy for

reasoners employing particular optimizations or are only difficult due to the fact that

they encode large propositional satisfiability problems [Horrocks and Patel-Schneider,

1998a]. Since our goal was to demonstrate the usefulness of the hypertableau calculus

on realistic problems, we have chosen to ignore such ontologies and test problems, as

they mainly test specialized calculi and optimizations that are applicable to various

sublanguages of SROIQ. Instead, we focus our evaluation on practical ontologies in

which the main difficulty is due to nontrivial reasoning problems encountered during

classification.

In addition to the hypertableau calculus described in Chapter 5, HermiT also im-

plements the optimizations from Chapter 6 and the well-known dependency directed

backtracking optimization [Horrocks, 2007]. Thus, HermiT fully supports SROIQ

and it can perform both satisfiability and subsumption testing as well as knowledge

136



base classification. An extensive discussion of implementation techniques is beyond

the scope of this thesis; we only comment briefly on the implementation of anywhere

blocking.

12.1.1 Implementing Anywhere Blocking

When used in conjunction with subset blocking, described in Section 6.3, anywhere

blocking can be more costly than ancestor blocking. In this case, determining the

blocking status of an individual may require examination of all individuals in an

ABox and not just the individual’s ancestors; computing the blocking status of all

individuals could thus result in a quadratic number of comparisons (with respect to

the total number of individuals).

As previously mentioned, however, subset blocking is applicable only when reason-

ing over knowledge bases encoded in relatively inexpressive logics that do not include

inverse roles, and the technique presents additional challenges in the hypertableau

setting. When blocking is instead based on exact matching between labels, as is the

case for the pairwise blocking strategy given by Definition 13 for SROIQ, the single

blocking strategy given by Definition 16 for SHOQ+, and the full single blocking

strategy given by Definition 18 for SHOI, the quadratic number of comparisons can

be avoided by maintaining an associative array or hash table in which individuals are

indexed by their four blocking labels.

In HermiT, this table is created by scanning all individuals in A in the increasing

sequence of the ordering ≺. For each individual s in A, if the parent of s is blocked,

then s is indirectly blocked; otherwise, the algorithm queries the hash table for an

individual whose blocking labels are equal to those of s. If the hash table contains

such an individual t, then s is directly blocked in A by t; otherwise, s is not blocked

in A so it is added into the hash table. The blocking status of all individuals in A can

thus be determined with a linear number of hash table lookups (against with respect

137



to the number of individuals in A).

12.1.2 Test Procedure

We used Pellet 2.0.0rc4 [Parsia and Sirin, 2004] and FaCT++ 1.2.2 [Tsarkov and Hor-

rocks, 2006] as reference implementations of the SHOIQ tableau algorithm [Horrocks

and Sattler, 2007]. Pellet employs ancestor blocking, while FaCT++ has recently been

extended with anywhere blocking. At the time of testing, however, the implementa-

tion of anywhere blocking in FaCT++ was known to be incorrect,2 so we switched

this feature off and used FaCT++ with ancestor blocking as well. To measure the

effects of ancestor vs. anywhere blocking, we also used HermiT-Anc—a version of

HermiT with ancestor blocking.

Knowledge bases encoded as OWL ontologies can be split across multiple files that

are joined together using import statements. Due to inconsistencies among reasoners

with respect to handling of import statements, we run benchmarks over only ontolo-

gies contained within a single file. Because much of the test data available makes use

of imports, we have “localized” ontologies by parsing them, resolving and parsing all

imports, merging the main and imported ontologies together, and re-serializing the

ontology, all using the OWL API (version 2.2.1, from the 104 Protege release). The

version of the OWL API used generates files with invalid namespaces in a number of

cases, and the resulting files sometimes still contain import statements in addition to

all the axioms from the imported ontology; these errors were corrected by hand. Each

test ontology in our test corpus can thus be parsed as a single file using the OWL

API. All test ontologies are available online.3

We used a collection of 392 test ontologies that we assembled from three indepen-

dent sources.

2 Personal communication with Dmitry Tsarkov.
3 http://www.comlab.ox.ac.uk/people/Rob.Shearer/2010/hermit-benchmarks.zip

138

http://www.comlab.ox.ac.uk/people/Rob.Shearer/2010/hermit-benchmarks.zip


• The Gardiner ontology suite [Gardiner et al., 2006] is a collection of OWL

ontologies gathered from the Web and includes many of the most commonly-

used OWL ontologies. A number of files have names which are not valid URIs;

in additional to the localization described above, we chose to rename these files.

• The Open Biological Ontologies (OBO) Foundry4 is a collection of biology and

life science ontologies. Imports are handled specially in these files: each main

ontology contains only axioms, and comes with two associated wrappers, one

containing import statements using relative path names to local files, and one

containing full URIs to ontologies on the web. We produced single-file versions

of all ontologies using the wrapper naming local imports. In cases where the

original OBO ontology does not import any other files, the local imports file is

empty (and does not even import the main file). In these cases we simply used

the main ontology file.

• We also included a number of versions of the GALEN ontology [Rector and

Rogers, 2006], a large and complex biomedical ontology which has been the

subject of reasoner optimization for many years. We test on a number of versions

with very different performance characteristics: the full version from the web

(which none of the tested reasoners could classify), the “undoctored” version

originally studied by Ian Horrocks during development of the FaCT system, a

“doctored” version which was modified such that it was classifiable by FaCT,

and “not-GALEN”, a relatively easy-to-process recent variant.

For each reasoner and ontology, we parsed the ontology using the OWL API,

loaded the ontology into the reasoner, classified the ontology, and wrote the classi-

fied taxonomy to disk. Only the times required for loading and classification were

measured, and the two times were added to produce summary results. All tests were

4 http://obofoundry.org/

139

http://obofoundry.org/


performed on a 2.2 GHz MacBook Pro with 2 GB of physical memory. A classification

attempt was aborted if it exhausted all available memory (Java tools were allowed to

use 1 GB of heap space), or if it exceeded a timeout of 30 minutes.

The taxonomies generated by each reasoner occasionally contain differences, but

almost all such situations are simply due to differing API conventions: FaCT++

sometimes makes classes direct parents of⊥ despite the existence of named subclasses,

and HermiT inserts the names of unsupported datatypes into the hierarchy.

There were a few cases in which it appears that the version of Pellet tested misses

some inferences; these cases were investigated manually, and it does appear that

Pellet’s results are incorrect while FaCT++ and HermiT produce the correct results.

Investigation of such correctness issues is beyond the scope of this thesis.

12.1.3 Results

The three reasoners exhibited negligible differences in performance on most of the test

ontologies. Therefore, we defer full results for all 392 ontologies to Appendix A and

discuss here only the test results for “interesting” ontologies—that is, ontologies that

can be classified by at least one of the tested reasoners, and that are either not trivial

or on which the tested reasoners exhibited a significant difference in performance.

These include several ontologies from the OBO corpus (Molecule Role, XP Uber

Anatomy, XP Plant Anatomy, Cellular Component, Gazetteer, CHEBI), two versions

of the National Cancer Institute (NCI) Thesaurus [Hartel et al., 2005], two versions of

the GALEN medical terminology ontology, two versions of the Foundational Model of

Anatomy (FMA) [Golbreich et al., 2006], the Wine ontology from the OWL Guide,5

two SWEET ontologies developed at NASA,6 and a version of the DOLCE ontology

developed at the Institute of Cognitive Science and Technology of the Italian National

Research Council.7 Basic statistical information about these ontologies is summarized

5 http://www.w3.org/TR/owl-guide/
6 http://sweet.jpl.nasa.gov/ontology/
7 http://www.loa-cnr.it/DOLCE.html

140

http://www.w3.org/TR/owl-guide/
http://sweet.jpl.nasa.gov/ontology/
http://www.loa-cnr.it/DOLCE.html


Table 12.1: Statistics of “Interesting” Ontologies

Number of Axioms
Ontology Name Classes Roles Individuals TBox RBox ABox Expressivity

Molecule Role 8849 2 128056 9243 1 128056 ALE+
XP Uber Anatomy 11427 82 88955 14669 80 88955 ALEHIF+
XP Plant Anatomy 19145 82 86099 35770 87 86099 SHIF

XP Regulators 25520 4 155169 42896 3 155169 SH
Cellular Component 27889 4 163244 47345 3 163244 SH

NCI-1 27653 70 0 46800 140 0 ALE
Gazetteer 150979 2 214804 167349 2 214804 ALE+

GALEN-doctored 2748 413 0 3937 799 0 ALEHIF+
GALEN-undoctored 2748 413 0 4179 800 0 ALEHIF+

CHEBI 20977 9 243972 38375 2 243972 ALE+
FMA-Lite 75141 2 46225 119558 3 46225 ALEI+

SWEET Phenomena 1728 145 171 2419 239 491 SHOIN (D)
SWEET Numerics 1506 177 113 2184 305 340 SHOIN (D)

Wine 138 17 206 355 40 494 SHOIN (D)
DOLCE-Plans 118 264 27 265 948 68 SHOIN (D)

NCI-2 70576 189 0 100304 290 0 ALCH(D)
FMA-Constitutional 41648 168 85 122695 395 86 ALCOIF(D)

in Table 12.1.

We noticed that, for all three reasoners, classification times may vary from run

to run. For Pellet and HermiT, this is due to Java’s collection library: the order of

iteration over collections often depends on the objects’ hash codes, and these may

vary from run to run; that, in turn, may change the order in which the derivation

rules are applied, and some orders may be better than others. We conjecture that

FaCT++ is susceptible to similar variations. While the times may vary, we have not

noticed a case where an ontology might be successfully classified in one run, but

not in another. Therefore, in Table 12.2 we present the classification times for the

“interesting” ontologies that we obtained on one particular run; these times can be

taken as being “typical.” We identified four groups of ontologies, which we delineate

in Table 12.1 and Table 12.2 by horizontal lines.

On the ontologies in the first group, HermiT performs similarly to HermiT-Anc,

which suggests little impact of anywhere blocking on the performance. Consequently,

141



Table 12.2: Results of Performance Evaluation

Ontology Name
Classification Times (seconds)

HermiT HermiT-Anc Pellet FaCT++

Molecule Role 3.3 3.4 25.7 304.5
XP Uber Anatomy 5.4 4.9 — 86.0
XP Plant Anatomy 12.8 11.2 87.2 22.9

XP Regulators 14.1 17.1 35.4 66.6
Celular Component 18.6 18.0 40.5 76.7

NCI-1 14.1 14.4 23.2 3.0
Gazetteer 131.9 132.3 — —

GALEN-doctored 8.8 456.3 — 15.9
GALEN-undoctored 126.3 — — —

CHEBI 24.2 — — 397.0
FMA-Lite 107.2 — — —

SWEET Phenomena 13.5 11.2 — 0.2
SWEET Numerics 76.7 72.6 3.7 0.2

Wine 343.7 524.6 19.5 162.1
DOLCE-Plans 1075.1 — 105.1 —

NCI-2 — — 172.0 60.7
FMA-Constitutional — — — 616.7

Note: entry — means that reasoner was unable to classify the ontology either
due to time out or memory exhaustion.

we believe that HermiT outperforms the other reasoners mainly due to the reduced

nondeterminism of the hypertableau calculus. As shown in Table 12.1, Molecule Role,

XP Uber Anatomy, and NCI-1 do not use disjunctions, so HermiT classifies them en-

tirely deterministically and caches all subsumption test results using a linear number

of core consistency tests. FaCT++ outperforms HermiT on NCI-1 because FaCT++

classifies this ontology using the completely defined concepts optimization [Tsarkov

and Horrocks, 2005a] instead of DL reasoning. This optimization enables FaCT++ to

use simpler structural reasoning techniques on ontologies that satisfy certain syntactic

constraints. Similar classification optimizations for HermiT based on the techniques

from Part III are discussed in Section 12.2.

On the ontologies in the second group, HermiT-Anc is significantly slower than

142



HermiT. This suggests that anywhere blocking significantly improves performance

since it prevents the construction of large models. Pellet runs out of memory on

all ontologies in this group; furthermore, FaCT++ cannot process two of them and

is significantly slower than HermiT on CHEBI. FaCT++, however, is faster than

HermiT-Anc on CHEBI and GALEN-doctored, and we conjecture that this is mainly

due to the ordering heuristics [Tsarkov and Horrocks, 2005b] used by FaCT++ in

selecting which expansion rule to apply at each point in a derivation. The superior

performance of HermiT on the ontologies in this group is mainly due to the fact

that all of these ontologies can be classified entirely deterministically. Furthermore,

HermiT’s classification time is in most cases dominated by only the first subsumption

test, as the caching of blocking labels described in Section 6.1 makes subsequent tests

easy.

On the ontologies in the third group, HermiT is significantly slower than the other

reasoners. As Table 12.1 shows, all ontologies in this group contain nominals, which

prevents HermiT from caching blocking labels. Furthermore, due to nominals, the

ABox must be taken into account during classification, and HermiT currently reap-

plies the hypertableau rules to the entire ABox in each run. Effectively, HermiT does

not reuse any computation between different hypertableau runs. The other two rea-

soners, however, use the completion graph caching optimization [Sirin et al., 2006], in

which the tableau rules are first applied to the entire ABox, and the resulting comple-

tion graph is used as a starting point in each subsequent run. Such an optimization

could also be incorporated into a hypertableau reasoner such as HermiT.

The version of HermiT tested was unable to classify the two ontologies in the

fourth group. Both of these ontologies include disjunctions, which prevents applica-

tion of the limited subsumption-caching optimization employed by this version of

HermiT; for these ontologies HermiT performs classification using the algorithm by

Baader et al. [1994] and not the techniques from Part III. All subsumption tests are

143



straightforward (each test takes less than 50 ms); however, the resulting taxonomy is

rather shallow, so HermiT makes an almost quadratic number of tests. Both Pellet

and FaCT++, however, use more optimized versions of the classification algorithm

that reduce the number of tests that need to be performed. In the case of these

two ontologies, performance appears to depend primarily upon classification, making

comparisons of core reasoning performance difficult. Newer versions of HermiT im-

plementing some of the techniques from Part III are able to classify both of these

ontologies, in 137 and 947 seconds, respectively.

To summarize, although HermiT is not better than Pellet and FaCT++ on all

ontologies, our results clearly demonstrate the practical potential of both reduced

nondeterminism due to the hypertableau calculus and reduced model sizes due to

anywhere blocking. In fact, anywhere blocking can mean the difference between suc-

cess and failure on complex ontologies, which suggests that and-branching is a more

significant source of inefficiency in practice than or-branching. Anywhere blocking is

applicable to tableau calculi as well (as mentioned earlier, FaCT++ already contains

a preliminary version of it), so we believe that our results can be used to improve

the performance of tableau reasoners as well without the need for a major redesign.

Conversely, most of the optimizations used in tableau reasoners can be used with

the hypertableau algorithm, and incorporating them into HermiT would probably

make HermiT competitive with Pellet and FaCT++ in those cases where HermiT is

currently slower.

12.2 Classification Performance

In order to determine whether the techniques from Part III are likely to improve classi-

fication performance in practice we conducted two experiments using large ontologies

derived from life-science applications.

144



12.2.1 Comparison with the Enhanced Traversal Method

First, we compared the performance of the Compute-Ordering-2 procedure de-

scribed in Chapter 9 with the enhanced traversal algorithm of Baader et al. [1994]. In

order to analyze how much improvement is due to the information extracted directly

from models and how much is due to our new approach to taxonomy construction,

we extend the enhanced traversal algorithm such that it first performs a satisfiability

test on every class name and constructs a cache of information derived from the re-

sulting models using the techniques described in Chapter 10. During the subsequent

taxonomy construction, subsumption tests are performed only if the relevant sub-

sumption relationship cannot be determined by consulting the cache. Note that this

caching technique strictly subsumes the “told subsumer” and “primitive component”

optimizations described by Baader et al. [1994].

We implemented both algorithms within the HermiT reasoner and performed test-

ing using an OWL version of the well-known US National Cancer Institute thesaurus

(NCI), a large but simple ontology containing 27,653 classes; this ontology is listed

as NCI-1 in Table 12.1 and the discussion of reasoning tests in Section 12.1.3. The

models constructed by HermiT during satisfiability testing of these classes provide

complete information about the subsumption ordering for this ontology, so both algo-

rithms are able to classify it without performing any additional tests. To study how

the algorithms compare when less-than-complete information is available, we lim-

ited the amount of information extracted from HermiT’s models. Both classification

algorithms were provided with only a subset of the actual subsumption relation as

“known” subsumptions, and a superset of the actual subsumption relation as “possi-

ble” subsumptions; the sizes of these two sets were varied independently. The number

of subsequent subsumption tests required for classification as well as the total running

times (including both classification and satisfiability testing) for each implementation

are given in Table 12.3.

145



Table 12.3: Algorithm Comparison

Relation Size ET New
Known Possible Tests Seconds Tests Seconds
335 476 335 476 0 190 0 17
335 476 2 244 050 152 362 246 24 796 22
335 476 4 147 689 303 045 257 49 308 31
335 476 6 046 804 455 054 292 73 945 33
335 476 7 940 847 606 205 305 98 613 34
251 880 335 476 80 878 634 19 773 28
251 880 2 244 050 439 002 740 50 143 32
251 880 4 147 689 794 513 809 79 038 40
251 880 6 046 804 1 151 134 836 107 416 46
251 880 7 940 847 1 506 752 919 136 190 50
168 052 335 476 143 913 1079 62 153 62
168 052 2 244 050 673 768 1267 146 823 91
168 052 4 147 689 1 201 904 1320 226 670 93
168 052 6 046 804 1 729 553 1414 304 784 98
168 052 7 940 847 - - 381 330 130

As the table shows, our simple implementation of the enhanced traversal algorithm

(ET) is substantially slower than the new algorithm even when complete information

is available; this is the result of the “insertion sort” behavior of ET described in

Chapter 11.

When complete information is not available, our algorithm consistently reduces

the number of subsumption tests needed to fully classify the ontology by an order of

magnitude.

12.2.2 Overall Performance

In a second experiment, we extended HermiT with both our taxonomy-construction

algorithm and our subsumption-information-extraction techniques and compared this

implementation with the widely-used Description Logic classifiers FaCT++ and Pel-

let. Both of these other systems are quite mature and implement a wide range of

optimizations to both taxonomy construction and subsumption reasoning; we were

thus able to compare our new algorithm with existing state-of-the-art implementa-

146



tions.

We performed tests using not only NCI, but also the Gene Ontology (GO) and a

version of the GALEN ontology of medical terminology.8 Both NCI and GO have been

specifically constructed to fall within the language fragment which existing reason-

ers are able to classify quickly; GALEN, in contrast, necessitates substantially more

difficult subsumption testing but contains an order of magnitude fewer class names.

In order to estimate how the different systems would behave with more expressive

ontologies, for each ontology O we constructed two extensions: O∃, which adds the

single axiom > v ∃R.A for a fresh property name R and fresh class name A, and

Ot which adds the axiom > v A t B for fresh class names A and B. For NCI

we constructed a further extension NCI∃∀ by adding the axioms > v ∃R.A and

C v ∀R.B for each of the 17 most general class names C occurring in the ontology.9

Each of these extensions increases the complexity of individual subsumption tests

and reduces the effectiveness of optimizations that try to avoid performing some or

all of the tests that would otherwise be needed during classification. The addition of

a single GCI containing an existential, for example, prevents the application of struc-

tural subsumption algorithms, such as the completely-defined-concept optimization

used by FaCT++ [Tsarkov et al., 2007], while adding disjunction to the knowledge

base prohibits the use of reasoning algorithms specific to deterministic KBs, such as

the one implemented by Pellet. The combination of existentials and universals re-

duces the applicability of the pseudo-model merging method [Haarslev et al., 2001a;

Horrocks, 1997], which is used by both reasoners to avoid subsumption testing.

The number of class names occurring in each ontology as well as the number of

8 Both of these ontologies were included in the tests described in Section 12.1 as a part of the
Gardiner corpus, but all four reasoners tested were able to classify them in similar times, so they
were not listed among the “interesting” ontologies. The results for both of these ontologies are listed
under the names go-daily-termdb.owl.20Feb06 and horrocks-OWL-Ontologies-galen.owl in
Appendix A.

9 These test ontologies are available at http://www.comlab.ox.ac.uk/people/Rob.Shearer/

2010/classification-benchmarks.tgz.

147

http://www.comlab.ox.ac.uk/people/Rob.Shearer/2010/classification-benchmarks.tgz
http://www.comlab.ox.ac.uk/people/Rob.Shearer/2010/classification-benchmarks.tgz


Table 12.4: System Comparison

FaCT++ Pellet HermiT
Ontology Classes Tests Seconds Tests Seconds Tests Seconds

NCI 27 653 4 506 097 2.3 - 16.1 27 653 22
NCI∃ 27 654 8 658 610 4.4 - 16.7 27 654 21.0
NCIt 27 655 8 687 327 5.1 10 659 876 95.4 48 389 37.0
NCI∃∀ 27 656 18 198 060 473.9 10 746 921 1098.3 27 656 20.8

GO 19 529 26 322 937 8.6 - 6.0 19 529 9.2
GO∃ 19 530 26 904 495 12.7 - 6.9 19 530 9.7
GOt 19 531 26 926 653 15.5 21 280 377 170.0 32 614 15.2

GALEN 2749 313 627 11.1 131 125 8.4 2749 3.3
GALEN∃ 2750 327 756 473.5 170 244 9.7 2750 3.5
GALENt 2751 329 394 450.5 175 859 9.8 4657 40.5

tests performed (including all class satisfiability and subsumption tests) and the total

time taken by each reasoner to fully classify each ontology are shown in Table 12.4.

The Pellet system makes use of a special-purpose reasoning procedure for ontologies

that fall within the EL fragment [Baader et al., 2005]. This procedure computes all

subsumptions using a single computation and does not perform individual subsump-

tion tests; for such ontologies we do not, therefore, list the number of subsumption

tests performed by Pellet.

As Table 12.4 shows, HermiT’s new classification algorithm dramatically reduces

the number of subsumption tests performed when classifying these ontologies. This

does not, however, always result in faster performance. This is largely due to opti-

mizations used by the other reasoners which greatly reduce the cost of subsumption

testing for simple ontologies: the overwhelming majority of subsumption tests per-

formed by FaCT++, for example, can be answered using the pseudo-model merging

technique described by Horrocks [1997] and by Haarslev et al. [2001a].

Most of these optimizations could equally well be used in HermiT, but in the ex-

isting implementation each subsumption test performed by HermiT is far more costly.

The number of subsumption tests performed by HermiT is, however, far smaller than

for the other reasoners, and its performance also degrades far more gracefully as the

148



complexity of an ontology increases: adding a single GCI or disjunction to an ontol-

ogy can prevent the application of special-case optimizations in Pellet and FaCT++,

greatly increasing the cost of subsumption testing and, due to the very large number

of tests being performed, vastly increasing the time required for classification. The

NCI∃∀ ontology, for example, eliminates any benefit from the pseudo-model merging

optimization (since no two pseudo-models can be trivially merged), and this causes

the classification time to increase by roughly two orders of magnitude for both Pellet

and FaCT++. In contrast, HermiT’s classification time is unaffected. The relatively

poor performance of HermiT on the GALENt ontology is due to the fact that the

underlying satisfiability testing implementation is not highly optimized for the case

when there are large numbers of branching points, even if no backtracking is actually

required. The GALEN ontology induces notoriously large models with large num-

bers of individuals in the ABox, and the additional GCI forces the creation of a new

branching point for every individual in the ABox.

149



Chapter 13

Conclusion

Our goal in this thesis has been to develop techniques for Description Logic reasoning

which allow for the implementation of reasoners that exhibit superior classification

performance on the types of ontologies encountered in practice. In particular, we inves-

tigated strategies for minimizing inefficiencies in common tableau consistency testing

algorithms arising as a result of or-branching, and-branching, and at-most branching.

Further, we explored new approaches to the implementation of classification services

for description logics.

We chose to focus on techniques applicable to classifying knowledge bases encoded

in SROIQ, a highly expressive description logic that forms the logical underpinning

of the semantic web language OWL 2. SROIQ includes support for inverse roles,

nominals, number restrictions, and complex role inclusion axioms (among other con-

structs), and the combination of these features presents unique challenges in the

design of reasoning systems.

Although sound, complete, and efficient handling of SROIQ ontologies was a key

objective, many of the techniques developed can be usefully applied to other logics

and in other settings.

13.1 Contributions

Part II of this thesis presented a novel hypertableau-based calculus for reasoning over

150



knowledge bases encoded in the description logic SROIQ. Our new calculus is based

on translating a SROIQ knowledge base into a set of assertions and a set of first-

order clauses of a particular form. The clauses are then repeatedly matched against

the set of assertions, which is extended at each step. Given a knowledge base K, our

calculus enables the derivation of a representation of a model of K in nondeterministic

triple exponential time, if such a model exists.

This calculus offers a number of advantages over previously-known algorithms for

DL consistency testing. The translation to clauses results in far less nondeterminism

(or-branching) than traditional tableau algorithms; in many cases, including those for

all Horn knowledge bases, hypertableau reasoning is entirely deterministic. Our algo-

rithm’s use of anywhere blocking also substantially reduces the sizes of the ABoxes

generated in the course of a derivation, mitigating the effect of and-branching on per-

formance. Finally, our novel NI -rule eliminates inefficiencies due to at-most branching.

We have shown that our calculus is amenable to a wide range of optimizations, and

can be adapted to deal very efficiently with a number of logics less expressive than

SROIQ.

Part III presented a new approach to classification based on several novel tech-

niques. We provided a procedure for combining the results of individual binary tests

(such as subsumption tests) to derive the maximum possible information about a

quasi-ordering (such as a subsumption relation). Using this technique, we described

a general-purpose algorithm for reducing the number of individual tests required to

compute a taxonomy. Our new approach is applicable in a wide variety of domains

beyond the classification of concept names in a Description Logic knowledge base.

We also provided techniques specific to knowledge base classification which go be-

yond the use of a consistency testing procedure as a black box. We showed how models

generated during consistency testing can be used as rich sources of subsumption and

non-subsumption information. In many cases, our approach is able to derive com-

151



plete information about the subsumption relation using an extremely small number

of consistency tests.

We implemented our new techniques in a prototypical reasoner called HermiT;

we analyzed various aspects of this implementation’s performance in Part IV. We

showed that across a wide range of test data, HermiT does not perform significantly

worse than reasoners based on more traditional approaches, and often performs much

better. In some cases, HermiT is able to classify ontologies that no other reasoner can

handle.

13.2 Significance

As ontologies written in OWL 2 are becoming increasingly common and widely-used,

the need for highly-efficient SROIQ reasoners is only increasing. The approach to DL

reasoning described in this thesis represents a new state of the art, and the foundation

upon which we expect future implementations to be based.

Even mature existing implementations have begun adoption of the novel tech-

niques described here. Newer versions of the FaCT++ and Pellet reasoners, for ex-

ample, now use our anywhere blocking strategy instead of the ancestor blocking used

previously, and the developers of both reasoners have articulated plans to implement

our new classification algorithm.

The HermiT system developed as a demonstration of our techniques has already

become one of the most widely-deployed reasoners available. In fact, HermiT is now

the standard reasoner distributed with the Protégé editor for OWL.

13.3 Future Work

Despite the performance improvements observed due to the work presented here, there

are still ontologies encountered in practice that defeat HermiT (as well as traditional

152



tableau reasoners). Our testing indicates that while our techniques for reducing non-

determinism have been very effective, ontologies with large numbers of cyclic axioms

are able to induce extremely large ABoxes due to and-branching, even when anywhere

blocking is employed. We thus expect future work to focus on even more sophisticated

blocking strategies and other techniques to reduce the sizes of generated ABoxes.

Our classification algorithm has proven to be a huge improvement over previously-

known techniques for taxonomy construction, however substantial opportunities for

further research remain. Our procedure for combining partial information to discover

tighter limits on the subsumption relation has been shown to be optimal, however

meaningful complexity bounds on the number of tests required to fully compute a

taxonomy are elusive. As we have seen, a completely näıve search routine is opti-

mal if only the number of elements in the taxonomy is considered; bounds based on

more sophisticated metrics (e.g. the size of the subsumption relation or its transitive

reduction) may be more enlightening.

Further, preliminary testing demonstrates that when significant partial informa-

tion is available, the “most subsumption tests return false” heuristic upon which the

top-down/bottom-up taxonomy search procedure is based may not be applicable; in

many cases a completely random choice of subsumption tests performs equally well

or better. An exploration of the fragments of realistic ontologies’ subsumption re-

lations which are not immediately derived as partial information could yield more

appropriate heuristics.

Finally, although the calculus presented in this thesis is designed to efficiently han-

dle large ABoxes, we have not focused on optimizations specific to either ontologies

containing large numbers of individual names or ABox-specific reasoning tasks such

as realization or query answering. We believe that our techniques are easily adapted

to such problems, and suggest in particular that information about named individuals

could be extracted from the ABoxes derived by our calculus in the same way that

153



we extract subsumption information. Such optimizations, as well as the implementa-

tion of previously-known ABox optimizations within the HermiT reasoner, are left to

future work.

154



Appendix A

Reasoning Performance Data

We provide here timing data for all reasoning tests performed as a part of the evalua-

tion described in Section 12.1. A full description of the testing procedure is provided

in Section 12.1.2, and an analysis of these results is presented in Section 12.1.3.

Ontology
Classification Times (msec)

HermiT HT-Anc Pellet FaCT++

cob.owl 112 141 75 10
disease-ontology.owl 115 125 64 9
ncbi-taxonomy.owl 118 135 75 9

mosquito-insecticide-resistance.owl 131 146 74 16
oboInOwl.owl 139 140 81 14

rdf-imsmd-technicalv1p2 140 169 75 10
psi-mi.owl 141 151 68 14

zea-mays-anatomy.owl 143 139 73 11
2001-05-rdf-ds-datastore-schema 145 169 101 10

rdf-imsmd-annotationv1p2 147 127 76 7
dvm-daml-exp-ont.daml 147 151 82 12
human-phenotype.owl 148 127 72 14

gem-elements- 149 144 73 8
TomsSmallOnt.owl 149 230 58 10

gem-gemtype- 153 151 125 10
psi-mod.owl 154 139 60 12
ont-kissology 155 168 65 7

2001-02-acls-ns 157 171 88 11
DAML-ArtOntology.daml 160 154 113 17

2003-01-geo-wgs84-pos 160 176 81 10
ontologies-ittalks-assertions 161 194 87 9

DAML-Imaging.daml 161 164 103 8
rdf-imsmd-generalv1p2 161 145 91 10

Note: an entry — means that reasoner was unable to classify the ontology either
due to time out or memory exhaustion.

155



Ontology
Classification Times (msec)

HermiT HT-Anc Pellet FaCT++

dvm-daml-agent-ont.daml 163 156 83 9
projects-plus-DAML-onts-cs1.1.daml 165 169 120 14

rdf-imsmd-metametadatav1p2 166 169 64 8
2002-04-geonames-geonames-ont 166 190 100 31
2005-04-wikipedia-wikiont.owl 168 239 103 11

daml-ontologies-sri-basic-1-0-Time.daml 169 155 86 13
ImageFingerprintingOntology-web.daml 169 177 94 12

rdf-imsmd-rightsv1p2 169 135 74 8
2002-04-classification-classification-ont 169 167 92 11

2000-10-swap-util-sniffSchema 170 150 83 7
2001-03-daml+oil 170 217 166 15

pharmacogenomics.owl 171 149 61 9
schemas-meta-rdf- 171 166 85 14

rdf-imsmd-rootv1p2 173 167 79 8
net-bloggercode- 173 191 98 13

net-schemas-quaffing- 173 168 86 8
transmission.owl 174 181 95 16

2000-01-rdf-schema 174 184 76 10
BriefingsOntology.daml 175 179 111 15

2003-02-usps-usps-ont.owl 176 147 81 8
gem-A2AStandard- 177 152 94 10

2000-10-annotationType 177 152 94 9
net-inkel-rdf-schemas-lang-1.1 177 201 80 11

gem-NISO-Z3919- 177 153 88 10
dvm-daml-bib-ont.daml 177 142 82 10

ontos-compontos-tourism-I3.daml 178 198 246 50
atlas-employment-categories.daml 178 173 116 16

2001-06-expenses-amex-ont 179 204 94 20
ont-2004-01-rcc 179 203 86 11
dc-dcmitype- 179 180 165 10

ont-homework-atlas-publications.daml 181 181 87 14
DAML-pptOntology.daml 181 149 88 10

ro-proposed.owl 182 171 91 15
library-wordnet-wordnet-20000620.rdfs 182 191 91 18

ontologies-ittalks-event 182 186 92 8
2004-02-skos-mapping 183 199 87 9

2001-09-countries-iso-3166-ont 183 224 87 8
relationship.owl 184 174 72 30
2000-03-13-eor 184 245 96 9

ontologies-ittalks-topic 185 209 84 18
2002-03-ranks-rank-ont 185 215 73 9

ont-homework-atlas-date.daml 187 196 111 15

Note: an entry — means that reasoner was unable to classify the ontology either
due to time out or memory exhaustion.

156



Ontology
Classification Times (msec)

HermiT HT-Anc Pellet FaCT++

services-owl-s-1.1-Service.owl 187 181 96 11
2000-10-daml-ont 187 202 109 15

community-xmlns-2006-gallery 188 203 96 9
ro-ucdhsc.owl 188 162 75 17

2001-09-countries-fips-10-4-ont 188 184 106 10
2002-09-milservices-milservices-ont 188 217 91 24

golbeck-daml-baseball.daml 188 181 77 12
golbeck-daml-running.daml 189 196 116 15

2001-02-projectplan-projectplan 189 215 76 12
2000-10-annotation-ns 190 178 81 8

RDF-relational.owl 190 230 106 10
dc-elements-1.1- 190 194 96 10

ontology-research.owl 190 233 144 10
8080-umls-UMLSinDAML-NET-SRDEF.daml 190 254 149 22

geoCoordinateSystems20040307.owl 192 170 101 8
ontos-compontos-tourism-II1.daml 192 237 307 65

1999-02-22-rdf-syntax-ns 193 187 82 13
2002-11-08-ccpp-schema 193 168 82 10

2002-10-sndl-unit-ont 193 207 102 12
ont-2004-01-agent 193 210 79 11

2004-12-q-contentlabel 193 163 80 10
2001-10-office-office 194 221 125 10

rdf-imsmd-lifecyclev1p2 194 182 95 9
2002-03-usnships-ship-ont 195 211 87 20

communityreview-scientific-review-o 195 255 91 38
ontos-compontos-tourism-III1.daml 196 220 255 46
ontos-compontos-tourism-II4.daml 197 205 232 44

projects-plus-DAML-onts-cs1.0.daml 197 210 191 16
http—amk.ca-xml-review-1.0 198 207 69 11

2002-02-chiefs-chiefs-ont 198 197 103 12
dav-ontologies-policyContainmentTest.owl 198 188 135 11

2001-06-expenses-check-ont 199 201 90 26
rdf-imsmd-educationalv1p2 199 152 96 10

2002-03-darpadir-darpadir-ont 200 215 93 14
ont-homework-cmu-ri-courses-ont.daml 201 255 191 35

ont-homework-atlas-cmu.daml 202 211 144 16
glapizco-technical.owl 203 189 140 10

2000-10-swap-pim-doc.rdf 203 175 95 19
projects-plus-DAML-onts-beer1.0.daml 203 226 155 20

2003-06-sw-vocab-status-ns 203 193 72 9
2001-10-html-airport-ont 203 198 83 8

sioc-ns 204 472 111 9

Note: an entry — means that reasoner was unable to classify the ontology either
due to time out or memory exhaustion.

157



Ontology
Classification Times (msec)

HermiT HT-Anc Pellet FaCT++

HomeWork1-ResearchProjectOntology.daml 204 196 109 11
DAML-ATO98MessageSet-Ontology.owl 205 330 101 11

2001-06-expenses-eecr-ont 205 201 92 32
2002-07-owl 208 176 157 14

webscripter-project.o.daml 208 250 168 21
projects-plus-DAML-onts-personal1.0.daml 209 183 105 20

projects-DAML-ksl-daml-desc.daml 210 253 152 15
net-schemas-book 211 206 75 10

research-AgentCities-ontologies-pubs 211 213 184 27
webscripter-todo.o.daml 212 272 200 17

ontos-compontos-tourism-II3.daml 212 203 250 53
2001-06-expenses-trip-ont 213 233 99 33

2002-08-nasdaq-nasdaq-ont 213 250 104 32
2001-10-html-zipcode-ont 213 200 112 15
golbeck-web-trust.daml 214 199 102 10
2002-10-units-units-ont 215 214 106 12

webscripter-snapshot.o.daml 215 272 173 19
owl-gforge-site 216 253 124 14

ontology-project.owl 216 260 142 27
fungal-anatomy.owl 216 195 152 136

2001-01-gedcom-gedcom 217 249 146 14
2004-02-skos-extensions 217 182 73 12

ont-vcard 217 193 98 11
2002-03-metrics-metrics-ont 217 216 94 31

2002-05-mcda-mcda-ont 219 222 127 30
TestPizzaOntology.owl 219 238 200 13
ontology-contact.owl 219 249 96 21

projects-DAML-ksl-daml-instances.daml 220 226 121 13
webscripter-publication.o.daml 220 259 181 22

2003-05-subway-subway-ont 220 180 119 11
ont-homework-cmu-ri-project-ont.daml 220 235 185 17

2001-10-html-airport-ont 222 218 83 8
projects-plus-DAML-onts-general1.0.daml 223 188 157 19

ontos-compontos-tourism-III3.daml 223 233 274 67
webscripter-person.o.daml 224 246 152 15

ontology-news.owl 224 267 96 21
ont-homework-cmu-ri-center-ont.daml 224 233 194 18

2000-10-swap-pim-contact 225 226 163 23
2002-02-telephone-1-areacodes-ont 225 217 101 38

2001-10-cvslog-cvslog-ont 225 274 101 30
yzou1-daml-acldaml.daml 225 232 136 33

ont-trust.owl 226 203 89 10

Note: an entry — means that reasoner was unable to classify the ontology either
due to time out or memory exhaustion.

158



Ontology
Classification Times (msec)

HermiT HT-Anc Pellet FaCT++

biosphere.owl 226 320 107 11
net-ontology-beer 227 239 252 13
bilateria-mrca.owl 227 274 309 18

ontology-person.owl 227 264 207 21
plasmodium-life-cycle.owl 228 249 126 18

projects-plus-DAML-onts-univ1.0.daml 228 189 167 14
communityreview-abstract-review-o 228 247 109 37

2002-10-hazardous-hazardous-cargo-ont 228 229 169 20
bfo.owl 228 266 185 18

DAML-DynamicOntology1.owl 229 204 143 12
2001-03-daml+oil 230 195 164 12

tools-tools-ont 230 224 106 36
webscripter-person.o.daml 232 204 154 12

tools-tools-ont 232 220 107 22
gem-qualifiers- 232 265 237 13

projects-plus-DAML-onts-docmnt1.0.daml 232 199 107 23
webscripter-division.o.daml 237 221 157 18

ont-2004-01-time 237 282 139 24
2003-vegetarian.owl 238 233 228 12

2000-10-swap-pim-contact.rdf 239 200 162 42
2004-08-Presentations.owl 240 227 148 20

ont-2004-01-person 241 306 141 23
ont-homework-cmu-ri-people-ont.daml 241 251 202 21

DAML-terroristAttackTypes.daml 242 241 225 42
yzou1-daml-acl.daml 242 238 164 25

ontology-association.owl 243 271 99 10
worm-development.owl 244 227 137 14
2002-03-agents-mcda 245 239 117 24

2002-12-cal-ical 246 271 188 18
HomeWork3-SurveyOntology.daml 246 280 215 42

projects-integration-projects-20010811 247 256 138 33
ontology-conference.owl 247 263 94 22
2003-04-agents-enpmap 248 214 83 26

webscripter-document.o.daml 249 256 193 14
plugins-owl-owl-library-camera.owl 250 186 128 15

ro-bfo-bridge.owl 251 243 244 26
ontology-event.owl 251 289 114 21

2001-10-html-nyse-ont 251 225 85 39
ontologies-talk-ont 252 322 129 37

golbeck-web-www04photo.owl 252 242 160 22
DAML-Military.owl 253 246 207 46
2001-03-earl-0.95.rdf 253 254 240 45

Note: an entry — means that reasoner was unable to classify the ontology either
due to time out or memory exhaustion.

159



Ontology
Classification Times (msec)

HermiT HT-Anc Pellet FaCT++

dc-terms- 255 223 228 15
2001-10-html-nyse-ont 256 219 92 21

ont-homework-cmu-ri-labgroup-ont.daml 258 297 174 15
2003-owl-geo-geoFeatures20040307.owl 261 236 223 12

ont-homework-cmu-ri-publications-ont.daml 263 356 229 38
ro-bfo-bridge1-1.owl 263 265 262 18

HomeWork3-BriefingOntology.daml 264 218 178 13
ontologies-ittalks-person 264 265 113 20

evidence-code.owl 268 269 177 35
2003-01-movienight-movienight-ont 269 222 122 39

caro.owl 269 255 218 23
ont-USRegionState.daml 269 257 280 26

2004-02-skos-core 269 243 228 31
owl-library-shuttle-crew-ont.owl 271 269 220 14

2001-10-agenda-agenda-ont 272 265 148 36
2001-08-baseball-baseball-ont 272 271 287 30

net-rss-2.0-enc 273 254 94 13
ont-currency.daml 275 260 282 36

net-ontology-order.owl 275 235 132 21
DAML-Government.owl 275 267 516 75

infectious-disease-ontology.owl 283 278 194 15
ontologies-ittalks-talk 284 286 118 23

image.owl 286 356 345 17
CinemaAndMovies.daml 288 237 188 54
webscripter-event.o.daml 288 317 229 21

ontology-photo.owl 289 275 91 22
projects-plus-DAML-onts-tseont.daml 289 303 173 44
dictyostelium-discoideum-anatomy.owl 292 389 310 34

ontologies-profile-ont 294 320 156 24
DAML-Elements.owl 294 327 356 41

2002-03-agents-agent-ont 295 301 208 41
ontologies-ittalks-address 300 212 66 8

fly-development.owl 301 3471 519 5918
DAML-ATO-Mission-Models.owl 301 295 331 24
plugins-owl-owl-library-koala.owl 302 286 185 31

temporal-gramene.owl 303 302 307 57
DAML-ATO-Ontology.owl 304 357 477 43
ontology-publication.owl 306 352 195 23

cmu-ri-employmenttypes-ont.daml 307 391 320 40
yeast-phenotype.owl 309 321 218 28

2003-02-UserModelOntology.daml 309 305 299 55
ns-doap 310 288 207 14

Note: an entry — means that reasoner was unable to classify the ontology either
due to time out or memory exhaustion.

160



Ontology
Classification Times (msec)

HermiT HT-Anc Pellet FaCT++

space-0.1- 313 278 143 12
mao.owl 319 305 230 36

spatial.owl 320 329 1020 64
8080-ontologies-wsdl-ont.daml 322 290 304 28
2004-02-wsa-ServiceModel.owl 325 321 339 37

gold 326 378 416 19
2001-06-map-map-ont 327 326 160 38

DAML-Communications.owl 327 312 346 50
mdabulaish-woodontology-woodontology.xml 329 313 245 14

plugins-owl-owl-library-generations.owl 331 362 168 15
DAML-WMD.owl 332 332 449 41

2004-02-wsa-ResourceModel.owl 337 357 357 28
2004-02-wsa-Extensions.owl 338 334 378 40

caro-to-bfo.owl 342 312 387 25
2004-02-wsa-MessageModel.owl 343 322 356 24

http—oiled.man.ac.uk-ontologies-ka 343 352 366 63
2004-02-wsa-PolicyModel.owl 347 318 354 23

BPMO-2004-03-03-cdl-Countries 351 346 180 42
2003-owl-geo-geoRelations20040307.owl 352 354 270 —

plugins-owl-owl-library-ka.owl 358 373 304 31
systems-biology.owl 362 372 326 43

horrocks-OWL-Ontologies-ka.owl 370 308 352 27
2000-10-swap-infoset-infoset-diagram.rdf 374 317 410 75

po-temporal.owl 375 382 424 153
release-biopax-level1.owl 380 373 295 25

ontology-support 382 356 193 39
mouse-pathology.owl 383 403 227 26

2001-06-itinerary-itinerary-ont 385 396 168 50
2003-09-factbook-factbook-ont 385 397 285 70

PizzaOntology.owl 392 388 193 235
9090-RDF-VRP-Examples-moviedatabase.rdf 393 442 277 26

pan-damltime-time-entry.owl 393 466 201 43
2003-07-umls- 396 420 579 50

ranwezs-ontologies-soccerV2.0.daml 399 418 400 21
mkhedr-Ontologies-Fuzzy 408 402 274 —

spider-anatomy.owl 413 462 324 89
amphibian-anatomy.owl 419 557 386 158

Downloads-Level2v0.94-biopax-level2.owl 429 448 305 39
2001-11-IsaViz-graphstylesheets 429 427 224 15

plugins-owl-owl-library-people+pets.owl 435 432 347 —
horrocks-OWL-Ontologies-mad-cows.owl 437 450 374 26

ontologies-booze 449 420 751 —

Note: an entry — means that reasoner was unable to classify the ontology either
due to time out or memory exhaustion.

161



Ontology
Classification Times (msec)

HermiT HT-Anc Pellet FaCT++

Aingeru-OperOnt.owl 462 538 604 86
plant-environment.owl 466 454 459 75

flybase-vocab.owl 467 481 332 47
services-owl-s-1.1-Process.owl 477 509 301 37

Files-DLPOnts-DOLCE-Lite-397.owl 481 474 371 41
2004-owl-mindswappers 482 391 492 39
loggerhead-nesting.owl 483 396 288 51

ontologies-2006-01-copyrightonto.owl 491 507 527 21
horrocks-Ontologies-tambis.daml 496 498 960 273

amino-acid-2005-10-11-amino-acid.owl 496 496 644 72
2003-07-cns- 496 488 698 110

rex.owl 498 485 479 93
services-owl-s-1.1-Profile.owl 499 463 366 36

DAML-Economy.owl 501 462 586 77
DAML-Transportation.owl 507 504 710 51

ont-USCity.daml 509 487 528 143
pathway.owl 518 480 492 84

plugins-owl-owl-library-travel.owl 518 481 295 —
tick-anatomy.owl 529 545 518 231

ontologies-pizza-pizza-20041007.owl 531 514 623 46
evoc.owl 534 533 454 59

plugins-owl-owl-library-resume.owl 606 607 734 —
protein.owl 612 639 851 270

plant-trait.owl 622 615 712 184
services-owl-s-1.1-Profile.owl 624 454 348 51

services-owl-s-1.1-Grounding.owl 633 472 357 49
envo.owl 694 820 866 548

po-anatomy.owl 695 732 605 218
xenopus-anatomy.owl 709 659 954 271
cereal-anatomy.owl 715 641 647 287
DAML-SUMO.owl 721 711 813 101
2002-01-p3prdfv1 726 565 548 82

ont-AirportCodes.daml 814 805 768 381
fix.owl 842 897 570 143
cell.owl 849 760 815 175

DAML-Mid-level-ontology.owl 859 843 1796 190
quality-prerelease.owl 861 898 688 220

wbs-ontology-2004-08-fgdc-csdgm.owl 876 854 1004 81
resource-drm-orel-orel0-5.owl 892 651 716 101
human-dev-anat-abstract.owl 902 849 792 858

quality.owl 914 874 714 233
psi-ms.owl 940 857 827 202

Note: an entry — means that reasoner was unable to classify the ontology either
due to time out or memory exhaustion.

162



Ontology
Classification Times (msec)

HermiT HT-Anc Pellet FaCT++

mosquito-anatomy.owl 953 948 2120 3883
unit.owl 954 991 1008 245

worm-phenotype.owl 1024 829 927 306
doc-chimaera-ontologies-wines.daml 1024 1019 653 51

sequence.owl 1051 1061 3858 1007
sequence-xp.owl 1069 1046 3709 1008

teleost-anatomy.owl 1091 1284 16526 1750
adult-mouse-anatomy.owl 1126 1097 1077 581

go-xrf-metadata.owl 1146 1132 606 594
sequence-prerelease.owl 1174 1134 3917 1072

provenance.owl 1180 1147 — —
how-HydrologicUnits-2003-09-hu 1229 1345 1168 443

ontology-portal 1251 1334 1384 135
event.owl 1253 1248 1530 895

medaka-anatomy-development.owl 1269 1240 1310 3433
zebrafish-anatomy-prerelease.owl 1315 1332 1954 1470

brenda.owl 1353 1262 1437 2316
zebrafish-anatomy.owl 1472 1391 2004 1572

kmi-basic-portal-ontology.owl 1561 2524 813 —
cellular-component.owl 1571 1548 1580 817

cellular-component-xp-self.owl 1657 1436 1679 679
sao.owl 1734 1561 1661 262

2001-02-geofile-geofile-ont 1805 1834 23556 11679
uberon.owl 1869 1955 2322 446078

worm-anatomy.owl 2189 2244 3001 18777
human-dev-anat-staged.owl 2194 2045 5320 48323
ontologies-IEDMv1.0.owl 2409 2175 2424 414

gene-regulation.owl 2428 7929 11247 236
molecular-function.owl 2748 2916 14143 —

mammalian-phenotype.owl 2760 2782 5434 2367
Files-DLPOnts-ExtDnS-397.owl 2775 — 38323 711

emap.owl 3279 3827 8076 64977
fly-taxonomy.owl 3316 3070 3074 424
molecule-role.owl 3328 3391 25744 304549

quality-bfo-bridge.owl 3498 3495 1557 250
horrocks-OWL-Ontologies-galen.owl 4285 5155 12091 14314

ontologies-tambis-full.owl 4308 127208 1698 —
fly-anatomy.owl 4741 5352 64836 2637

plugins-owl-owl-library-not-galen.owl 4894 5788 90515 —
molecular-function-xp-uber-anatomy.owl 5442 4886 — 86038

not-galen.owl 6882 6249 86342 —
go-daily-termdb.owl.20Feb06 8195 7569 9695 8676

Note: an entry — means that reasoner was unable to classify the ontology either
due to time out or memory exhaustion.

163



Ontology
Classification Times (msec)

HermiT HT-Anc Pellet FaCT++

biological-process.owl 8326 9639 18639 11602
go-xp-regulation.owl 8748 9730 19866 12716

galen-ians-full-doctored.owl 8833 456269 — 15871
biological-process-xp-cell.owl 9512 10354 42590 12285

plugins-owl-owl-library-MGEDOntology.owl 10102 — 2590 —
bp-xp-cell.owl 11599 11082 54698 15333

biological-process-xp-self.owl 11930 11002 51095 13889
bp-xp-cellular-component.owl 12580 12340 55729 17034

biological-process-xp-cellular-component.owl 12643 12129 47868 15217
biological-process-xp-plant-anatomy.owl 12848 11178 87172 22884

sweet-phenomena.owl 13494 11198 — 208
molecular-function-xp-regulators.owl 14085 17126 35354 66570

2003-CancerOntology-nciOncology.owl 14096 14357 23279 2977
2003-04-01-cyc 14473 15290 — —

biological-process-xp-uber-anatomy.owl 16338 15439 — 102884
cellular-component-xp-go.owl 18568 17995 40540 76679

teleost-taxonomy.owl 19949 18978 40876 1092120
mged.owl 23801 — 63954 —
chebi.owl 24222 — — 397017

Files-DLPOnts-Information-397.owl 60459 — 63188 —
sweet-numerics.owl 76700 72650 3667 166
ontology-space.owl — 93124 4120 151

fma-lite-prerelease.owl 104331 — — —
fma-lite.owl 107274 — — —

galen-ians-full-undoctored.owl 126316 — — —
gazetteer.owl 131891 132340 — —

ncithesaurus.owl — — 172048 60654
ontologies-MGEDOntology.owl — — 190491 —
2001-sw-WebOnt-guide-src-wine 329752 547055 19786 190722

TR-2003-CR-owl-guide-20030818-food 331751 579475 20060 161298
TR-2003-CR-owl-guide-20030818-wine 343725 524568 19475 162099

FMA-constitutionalPartForNS.owl.20Feb06 — — — 616689
Files-DLPOnts-Plans-397.owl 1075099 — 105118 —

Note: an entry — means that reasoner was unable to classify the ontology either
due to time out or memory exhaustion.

164



References

[Andrka et al., 1998] Hajnal Andrka, Istvn Nmeti, and Johan van Benthem. Modal
languages and bounded fragments of predicate logic. Journal of Philosophical Logic,
27:217–274, 1998. 10.1023/A:1004275029985.

[Baader and Nutt, 2007] Franz Baader and Werner Nutt. Basic Description Logics.
In Baader et al. [2007], chapter 2, pages 47–100.

[Baader and Sattler, 2001] Franz Baader and Ulrike Sattler. An Overview of Tableau
Algorithms for Description Logics. Studia Logica, 69:5–40, 2001.

[Baader et al., 1994] Franz Baader, Bernhard Hollunder, Bernhard Nebel, Hans-
Jürgen Profitlich, and Enrico Franconi. An Empirical Analysis of Optimization
Techniques for Terminological Representation Systems or: Making KRIS Get a
Move on. Applied Artificial Intelligence. Special Issue on Knowledge Base Man-
agement, 4:270–281, 1994.

[Baader et al., 1996] Franz Baader, Martin Buchheit, and Bernhard Hollunder. Car-
dinality Restrictions on Concepts. Artificial Intelligence, 88(1–2):195–213, 1996.

[Baader et al., 2005] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing
the EL Envelope. In Proceedings of the 19th International Joint Conference on Ar-
tificial Intelligence (IJCAI 2005), pages 364–369, Edinburgh, UK, July 30–August
5 2005. Morgan Kaufmann Publishers.

[Baader et al., 2007] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge University Press, 2nd edi-
tion, August 2007.

[Baader, 2003] Franz Baader. Terminological Cycles in a Description Logic with Ex-
istential Restrictions. In Georg Gottlob and Toby Walsh, editors, Proceedings of
the 18th International Joint Conference on Artificial Intelligence, pages 325–330.
Morgan Kaufmann, 2003.

[Balsiger and Heuerding, 1998] Peter Balsiger and Alain Heuerding. Comparison
of Theorem Provers for Modal Logics — Introduction and Summary. In Har-
rie de Swart, editor, Proceedings of the 2nd International Conference on Analytic
Tableaux and Related Methods (TABLEAUX’98), volume 1397 of LNAI, pages 25–
26. Springer, 1998.

165



[Balsiger et al., 2000] Peter Balsiger, Alain Heuerding, and Stefan Schwendimann. A
Benchmark Method for the Propositional Modal Logics K, KT, S4. Journal of
Automated Reasoning, 24(3):297–317, 2000.

[Baumgartner and Schmidt, 2006] Peter Baumgartner and Renate A. Schmidt.
Blocking and Other Enhancements for Bottom-Up Model Generation Methods.
In Ulrich Furbach and Natarajan Shankar, editors, Proceedings of the 3rd Interna-
tional Joint Conference on Automated Reasoning (IJCAR 2006), volume 4130 of
LNCS, pages 125–139, Seattle, WA, USA, August 17–20 2006. Springer.

[Baumgartner et al., 1996] Peter Baumgartner, Ulrich Furbach, and Ilkka Niemelä.
Hyper Tableaux. In Proceedings of the European Workshop on Logics in Artifi-
cial Intelligence (JELIA ’96), number 1126 in LNAI, pages 1–17, Évora, Portugal,
September 30–October 3 1996. Springer.

[Baumgartner et al., 2008] Peter Baumgartner, Ulrich Furbach, and Björn Pelzer.
The Hyper Tableaux Calculus with Equality and an Application to Finite Model
Computation. Journal of Logic and Computation, 2008.

[Borgida, 1996] Alex Borgida. On the Relative Expressiveness of Description Logics
and Predicate Logics. Artificial Intelligence, 82(1–2):353–367, 1996.

[Bry and Torge, 1998] Franois Bry and Sunna Torge. A Deduction Method Com-
plete for Refutation and Finite Satisfiability. In Jürgen Dix, Luis F. del Cerro, and
Ulrich Furbach, editors, Proceedings European Workshop on Logics in Artificial In-
telligence (JELIA ’98), volume 1489 of LNCS, pages 122–138, Dagstuhl, Germany,
October 12–15 1998. Springer.

[Buchheit et al., 1993] Martin Buchheit, Francesco M. Donini, and Andrea Schaerf.
Decidable Reasoning in Terminological Knowledge Representation Systems. Jour-
nal of Artificial Intelligence Research, 1:109–138, 1993.

[Cormen et al., 2001] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms, Second Edition. The MIT Press
and McGraw-Hill Book Company, 2001.

[Daskalakis et al., 2007] Constantinos Daskalakis, Richard M. Karp, Elchanan Mos-
sel, Samantha Riesenfeld, and Elad Verbin. Sorting and Selection in Posets. CoRR,
abs/0707.1532, 2007.

[Derriere et al., 2006] Sebastian Derriere, André Richard, and Andrea Preite-
Martinez. An Ontology of Astronomical Object Types for the Virtual Observatory.
In Proceedings of the 26th meeting of the IAU: Virtual Observatory in Action: New
Science, New Technology, and Next Generation Facilities, pages 17–18, Prague,
Czech Republic, August 21–22 2006.

[Ding and Haarslev, 2006] Yu Ding and Volker Haarslev. Tableau Caching for De-
scription Logics with Inverse and Transitive Roles. In Bijan Parsia, Ulrike Sattler,

166



and David Toman, editors, Proceedings of the 2006 International Workshop on
Description Logics (DL 2006), volume 189 of CEUR Workshop Proceedings, Win-
dermere, UK, May 30–June 1 2006.

[Donini and Massacci, 2000] Francesco M. Donini and Fabio Massacci. EXPTIME
tableaux for ALC. Artificial Intelligence, 124(1):87–138, 2000.

[Donini et al., 1998] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and
Andrea Schaerf. AL-log: Integrating Datalog and Description Logics. Journal of
Intelligent Information Systems, 10(3):227–252, 1998.

[Donini, 2007] Francesco M. Donini. Complexity of Reasoning. In Baader et al.
[2007], chapter 3, pages 101–141.

[Ellis, 1991] Gerard Ellis. Compiled Hierarchical Retrieval. In 6th Annual Conceptual
Graphs Workshop, pages 285–310, 1991.

[Faddoul et al., 2008] Jocelyne Faddoul, Nasim Farsinia, Volker Haarslev, and Ralf
Möller. A Hybrid Tableau Algorithm for ALCQ. In Malik Ghallab, Constantine D.
Spyropoulos, Nikos Fakotakis, and Nikos M. Avouris, editors, Proceedings of the
18th European Conference on Artificial Intelligence (ECAI 2008), volume 178 of
Frontiers in Artificial Intelligence and Applications, pages 725–726, Patras, Greece,
July 21-25 2008. IOS Press.

[Faigle and Turán, 1985] Ulrich Faigle and György Turán. Sorting and Recognition
Problems for Ordered Sets. In Kurt Mehlhorn, editor, STACS, volume 182 of Lec-
ture Notes in Computer Science, pages 109–118, Saarbrücken, Germany, January
3–5 1985. Springer.

[Gardiner et al., 2006] Tom Gardiner, Ian Horrocks, and Dmitry Tsarkov. Auto-
mated Benchmarking of Description Logic Reasoners. In Proceedings of the 2006
Description Logic Workshop (DL 2006), volume 189 of CEUR Workshop Proceed-
ings, 2006.

[Georgieva et al., 2003] Lilia Georgieva, Ullrich Hustadt, and Renate A. Schmidt.
Hyperresolution for Guarded Formulae. Journal of Symbolic Computation, 36(1–
2):163–192, 2003.

[Goble et al., 2001] Carole A. Goble, Deborah L. McGuinness, Ralf Möller, and Pe-
ter F. Patel-Schneider, editors. Working Notes of the 2001 International Descrip-
tion Logics Workshop (DL-2001), volume 49 of CEUR Workshop Proceedings, Stan-
ford, CA, USA, August 1-3 2001. CEUR-WS.org.

[Golbreich et al., 2006] Christine Golbreich, Songmao Zhang, and Olivier Bodenrei-
der. The Foundational Model of Anatomy in OWL: Experience and Perspectives.
Journal of Web Semantics, 4(3):181–195, 2006.

167



[Goodwin, 2005] John Goodwin. Experiences of using OWL at the Ordnance Sur-
vey. In Proceedings of the 2005 International Workshop on OWL: Experiences and
Directions (OWLED 05), volume 188 of CEUR WS Proceedings, Galway, Ireland,
November 11–12 2005.

[Goré and Nguyen, 2007] Rajeev Goré and Linh Anh Nguyen. EXPTIME Tableaux
with Global Caching for Description Logics with Transitive Roles, Inverse Roles and
Role Hierarchies. In Proceedings of the 16th International Conference on Automated
Reasoning with Tableaux and Related Methods (TABLEAUX 2007), volume 4548
of LNCS, pages 133–148, Aix en Provence, France, July 3–6 2007. Springer.

[Haarslev and Möller, 2001a] Volker Haarslev and Ralf Möller. High Performance
Reasoning with Very Large Knowledge Bases: A Practical Case Study. In Bernhard
Nebel, editor, Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI-01), pages 161–166, 2001.

[Haarslev and Möller, 2001b] Volker Haarslev and Ralf Möller. Optimizing Reasoning
in Description Logics with Qualified Number Restrictions. In Goble et al. [2001].

[Haarslev and Möller, 2001c] Volker Haarslev and Ralf Möller. RACER System De-
scription. In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, Pro-
ceedings of the 1st International Joint Conference on Automated Reasoning (IJ-
CAR 2001), volume 2083 of LNAI, pages 701–706, Siena, Italy, June 18–23 2001.
Springer.

[Haarslev et al., 2001a] Volker Haarslev, Ralf Möller, and Anni-Yasmin Turhan. Ex-
ploiting Pseudo Models for TBox and ABox Reasoning in Expressive Description
Logics. In Proceedings of the 2001 International Joint Conference on Automated
Reasoning (IJCAR 2001), pages 61–75, 2001.

[Haarslev et al., 2001b] Volker Haarslev, Martina Timmann, and Ralf Möller. Com-
bining Tableaux and Algebraic Methods for Reasoning with Qualified Number Re-
strictions. In Goble et al. [2001].

[Haarslev et al., 2008] Volker Haarslev, Ralf Möller, and Sebastian Wandelt. The
Revival of Structural Subsumption in Tableau-Based Description Logic Reasoners.
In Franz Baader, Carsten Lutz, and Boris Motik, editors, Proceedings of the 21st
International Workshop on Description Logics (DL 2008), volume 353 of CEUR
Workshop Proceedings, Dresden, Germany, May 13–16 2008.

[Hartel et al., 2005] Frank W. Hartel, Sherri de Coronado, Robert Dionne, Gilberto
Fragoso, and Jennifer Golbeck. Modeling a Description Logic Vocabulary for Can-
cer Research. Journal of Biomedical Informatics, 38(2):114–129, 2005.

[Horrocks and Patel-Schneider, 1998a] Ian Horrocks and Peter F. Patel-Schneider.
Comparing Subsumption Optimizations. In Enrico Franconi, Giuseppe De Gia-
como, Robert M. MacGregor, Werner Nutt, and Christopher A. Welty, editors,

168



Proceedings of the 1998 Description Logic Workshop (DL’98), volume 11 of CEUR
Workshop Proceedings, pages 90–94, Povo–Trento, Italy, June 6–8 1998.

[Horrocks and Patel-Schneider, 1998b] Ian Horrocks and Peter F. Patel-Schneider.
DL Systems Comparison. In Enrico Franconi, Giuseppe De Giacomo, Robert M.
MacGregor, Werner Nutt, and Christopher A. Welty, editors, Proceedings of the
1998 International Workshop on Description Logic (DL’98), volume 11 of CEUR
Workshop Proceedings, pages 55–57, Povo–Trento, Italy, June 6–8 1998.

[Horrocks and Sattler, 2001] Ian Horrocks and Ulrike Sattler. Ontology Reasoning in
the SHOQ(D) Description Logic. In Bernhard Nebel, editor, Proceedings of the
7th International Joint Conference on Artificial Intelligence (IJCAI 2001), pages
199–204, Seattle, WA, USA, August 4–10 2001. Morgan Kaufmann Publishers.

[Horrocks and Sattler, 2004] Ian Horrocks and Ulrike Sattler. Decidability of SHIQ
with Complex Role Inclusion Axioms. Artificial Intelligence, 160(1–2):79–104, De-
cember 2004.

[Horrocks and Sattler, 2007] Ian Horrocks and Ulrike Sattler. A Tableau Decision
Procedure for SHOIQ. Journal of Automated Reasoning, 39(3):249–276, 2007.

[Horrocks et al., 2000a] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical
Reasoning for Very Expressive Description Logics. Logic Journal of the IGPL,
8(3):239–263, 2000.

[Horrocks et al., 2000b] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning
with Individuals for the Description Logic SHIQ. In David McAllester, editor,
Proceedings of the 17th International Conference on Automated Deduction (CADE-
17), volume 1831 of LNAI, pages 482–496, Pittsburgh, USA, June 17–20 2000.
Springer.

[Horrocks, 1997] Ian Horrocks. Optimising Tableaux Decision Procedures for Descrip-
tion Logics. PhD thesis, University of Manchester, 1997.

[Horrocks, 1998] Ian Horrocks. Using an Expressive Description Logic: FaCT or Fic-
tion? In Anthony G. Cohn, Lenhard Schubert, and Stuart C. Shapiro, editors,
Proceedings of the 6th International Conference on the Principles of Knowledge
Representation and Reasoning (KR ’98), pages 636–647, Trento, Italy, June 2–5
1998. Morgan Kaufmann Publishers.

[Horrocks, 2007] Ian Horrocks. Implementation and Optimization Techniques. In
Baader et al. [2007], chapter 9, pages 313–358.

[Hudek and Weddell, 2006] Alexander K. Hudek and Grant Weddell. Binary Absorp-
tion in Tableaux-Based Reasoning for Description Logics. In Bijan Parsia, Ulrike
Sattler, and David Toman, editors, Proceedings of the 2006 International Workshop
on Description Logics (DL 2006), volume 189 of CEUR Workshop Proceedings,
Windermere, UK, May 30–June 1 2006.

169



[Hustadt and Schmidt, 1999] Ullrich Hustadt and Renate A. Schmidt. Issues of De-
cidability for Description Logics in the Framework of Resolution. In Ricardo Caferra
and Gernot Salzer, editors, Selected Papers from Automated Deduction in Classical
and Non-Classical Logics, volume 1761 of LNAI, pages 191–205. Springer, 1999.

[Hustadt et al., 2005] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Data Com-
plexity of Reasoning in Very Expressive Description Logics. In Proceedings of the
19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pages
466–471, Edinburgh, UK, July 30–August 5 2005. Morgan Kaufmann Publishers.

[Kazakov, 2008] Yevgeny Kazakov. RIQ and SROIQ are Harder than SHOIQ. In
Gerhard Brewka and Jérôme Lang, editors, Proceedings of the 11th International
Conference on Principles of Knowledge Representation and Reasoning (KR 2008),
pages 274–284. AAAI Press, 2008.

[Knublauch et al., 2004] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and
Mark A. Musen. The Protégé OWL Plugin: An Open Development Environment
for Semantic Web Applications. In Proceedings of the 2004 International Semantic
Web Conference (ISWC 2004), pages 229–243, Hiroshima, Japan, November 7–11
2004.

[Kutz et al., 2006] Oliver Kutz, Ian Horrocks, and Ulrike Sattler. The Even More
Irresistible SROIQ. In Patrick Doherty, John Mylopoulos, and Christopher A.
Welty, editors, Proceedings of the 10th International Conference on the Principles
of Knowledge Representation and Reasoning (KR 2006), pages 68–78, Lake District,
UK, June 2–5 2006. AAAI Press.

[La Poutré and van Leeuwen, 1988] J. La Poutré and J. van Leeuwen. Maintenance
of transitive closures and transitive reductions of graphs. In Herbert Gttler and
Hana-Jrgen Schneider, editors, Graph-Theoretic Concepts in Computer Science,
volume 314 of Lecture Notes in Computer Science, pages 106–120. Springer Berlin
/ Heidelberg, 1988. 10.1007/3-540-19422-39.

[Lacy et al., 2005] Lee Lacy, Gabriel Aviles, Karen Fraser, William Gerber, Alice Mul-
vehill, and Robert Gaskill. Experiences Using OWL in Military Applications. In Pro-
ceedings of the 2005 International Workshop on OWL: Experiences and Directions
(OWLED 05), volume 188 of CEUR WS Proceedings, Galway, Ireland, November
11–12 2005.

[Lehmann, 1992] Fritz Lehmann. Semantic networks. Computers Mathematics with
Applications, 23(2-5), 1992.

[Lutz et al., 2006] Carsten Lutz, Franz Baader, Enrico Franconi, Domenico Lembo, Ralf
Möller, Riccardo Rosati, Ulrike Sattler, Boontawee Suntisrivaraporn, and Sergio Tes-
saris. Reasoning Support for Ontology Design. In Bernardo Cuenca Grau, Pascal
Hitzler, Conor Shankey, and Evan Wallace, editors, OWLED, volume 216 of CEUR
Workshop Proceedings, Athens, Georgia, USA, November 10-11 2006. CEUR-WS.org.

170



[Lutz et al., 2007] Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative Exten-
sions in Expressive Description Logics. In Proceedings of the 20th International Joint
Conference on Artifical Intelligence (IJCAI 07), pages 453–458, San Francisco, CA,
USA, 2007. Morgan Kaufmann Publishers.

[Möller et al., 2008] Ralf Möller, Volker Haarslev, and Sebastian Wandelt. The Revival
of Structural Subsumption in Tableau-based Reasoners. In Franz Baader, Carsten
Lutz, and Boris Motik, editors, Description Logics, volume 353 of CEUR Workshop
Proceedings, Dresden, Germany, May 13–16 2008. CEUR-WS.org.

[Motik et al., 2007] Boris Motik, Rob Shearer, and Ian Horrocks. Optimized Reasoning
in Description Logics using Hypertableaux. In Frank Pfenning, editor, Proceedings
of the 21st Conference on Automated Deduction (CADE-21), volume 4603 of LNAI,
pages 67–83, Bremen, Germany, July 17–20 2007. Springer.

[Motik et al., 2008] Boris Motik, Rob Shearer, and Ian Horrocks. Optimizing the Nom-
inal Introduction Rule in (Hyper)Tableau Calculi. In Franz Baader, Carsten Lutz,
and Boris Motik, editors, Proceedings of the 21st International Workshop on Descrip-
tion Logics (DL 2008), volume 353 of CEUR (http: // ceur-ws. org/ ), Dresden,
Germany, May 13–16 2008.

[Motik et al., 2009] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau Rea-
soning for Description Logics. Journal of Artificial Intelligence Research, 36:165–228,
2009.

[Motik, 2006] Boris Motik. Reasoning in Description Logics using Resolution and De-
ductive Databases. PhD thesis, Univesität Karlsruhe, Germany, 2006.

[Nonnengart and Weidenbach, 2001] Andreas Nonnengart and Christoph Weidenbach.
Computing Small Clause Normal Forms. In Alan Robinson and Andrei Voronkov, ed-
itors, Handbook of Automated Reasoning, volume I, chapter 6, pages 335–367. Elsevier
Science, 2001.

[Parsia and Sirin, 2004] Bijan Parsia and Evren Sirin. Pellet: An OWL-DL Reasoner,
November 7–11 2004.

[Patel-Schneider et al., 2004] Peter F. Patel-Schneider, Patrick Hayes, and Ian Hor-
rocks. OWL Web Ontology Language: Semantics and Abstract Syntax, W3C Rec-
ommendation, February 10 2004.
http://www.w3.org/TR/owl-semantics/.

[Plaisted and Greenbaum, 1986] David A. Plaisted and Steven Greenbaum. A
Structure-Preserving Clause Form Translation. Journal of Symbolic Logic and Com-
putation, 2(3):293–304, 1986.

[Rector and Rogers, 2006] Alan L. Rector and Jeremy Rogers. Ontological and Prac-
tical Issues in Using a Description Logic to Represent Medical Concept Systems:
Experience from GALEN. In Pedro Barahona, Franois Bry, Enrico Franconi, Nicola

171

http://ceur-ws.org/
http://www.w3.org/TR/owl-semantics/


Henze, and Ulrike Sattler, editors, Tutorial Lectures of the 2nd International Summer
School 2006, volume 4126 of LNCS, pages 197–231, Lisbon, Portugal, September 4–8
2006. Springer.

[Robinson, 1965] Alan Robinson. Automatic Deduction with Hyper-Resolution. Int.
Journal of Computer Mathematics, 1:227–234, 1965.

[Ruttenberg et al., 2005] Alan Ruttenberg, Jonathan Rees, and Joanne Luciano. Expe-
rience Using OWL DL for the Exchange of Biological Pathway Information. In Pro-
ceedings of the 2005 International Workshop on OWL: Experiences and Directions
(OWLED 05), volume 188 of CEUR WS Proceedings, Galway, Ireland, November
11–12 2005.

[Schmidt and Hustadt, 2003] Renate A. Schmidt and Ullrich Hustadt. A Principle for
Incorporating Axioms into the First-Order Translation of Modal Formulae. In Franz
Baader, editor, Proceedings of the 19th International Conference on Automated De-
duction (CADE-19), volume 2741 of LNAI, pages 412–426, Miami Beach, FL, USA,
July 28–August 2 2003. Springer.

[Schmidt-Schauß and Smolka, 1991] Manfred Schmidt-Schauß and Gert Smolka. At-
tributive Concept Descriptions with Complements. Artificial Intelligence, 48(1):1–26,
1991.

[Shearer and Horrocks, 2009] Rob Shearer and Ian Horrocks. Exploiting Partial In-
formation in Taxonomy Construction. In Abraham Bernstein, David R. Karger,
Tom Heath, Lee Feigenbaum, Diana Maynard, Enrico Motta, and Krishnaprasad
Thirunarayan, editors, Proceedings of the 8th International Semantic Web Conference
(ISWC 2009), volume 5823 of LNCS, pages 569–584, Chantilly, VA, USA, October
25–29 2009. Springer.

[Shearer et al., 2008] Rob Shearer, Boris Motik, and Ian Horrocks. HermiT: A Highly-
Efficient OWL Reasoner. In Alan Ruttenberg, Ulrile Sattler, and Cathy Dolbear,
editors, Proceedings of the 5th International Workshop on OWL: Experiences and
Directions (OWLED 2008 EU), volume 432 of CEUR (http: // ceur-ws. org/ ),
Karlsruhe, Germany, October 26–27 2008.

[Shearer et al., 2009] Rob Shearer, Ian Horrocks, and Boris Motik. Exploiting Par-
tial Information in Taxonomy Construction. In Bernardo Cuenca Grau, Ian Hor-
rocks, Boris Motik, and Ulrike Sattler, editors, Proceedings of the 22nd Interna-
tional Workshop on Description Logics (DL 2009), volume 477 of CEUR (http:
// ceur-ws. org/ ), Oxford, UK, July 27–30 2009.

[Sidhu et al., 2005] Armandeep S. Sidhu, Tharam S. Dillon, Elizabeth Chang, and
Baldev S. Sidhu. Protein Ontology Development using OWL. In Proceedings of the
2005 International Workshop on OWL: Experiences and Directions (OWLED 05),
volume 188 of CEUR WS Proceedings, Galway, Ireland, November 11–12 2005.

172

http://ceur-ws.org/
http://ceur-ws.org/
http://ceur-ws.org/


[Sirin et al., 2006] Evren Sirin, Bernardo Cuenca Grau, and Bijan Parsia. From Wine
to Water: Optimizing Description Logic Reasoning for Nominals. In Patrick Doherty,
John Mylopoulos, and Christopher A. Welty, editors, Proceedings of the 10th Inter-
national Conference on Principles of Knowledge Representation and Reasoning (KR
2006), pages 90–99, Lake District, UK, June 2–5 2006. AAAI Press.

[Soergel et al., 2004] Dagobert Soergel, Boris Lauser, Anita Liang, Frehiwot Fisseha,
Johannes Keizer, and Stephen Katz. Reengineering Thesauri for New Applications:
The AGROVOC Example. Journal of Digital Information, 4(4), 2004.

[Tobies, 2000] Stephan Tobies. The Complexity of Reasoning with Cardinality Restric-
tions and Nominals in Expressive Description Logics. Journal of Artificial Intelligence
Research, 12:199–217, 2000.

[Tobies, 2001] Stephan Tobies. Complexity Results and Practical Algorithms for Logics
in Knowledge Representation. PhD thesis, RWTH Aachen, Germany, 2001.

[Tsarkov and Horrocks, 2004] Dmitry Tsarkov and Ian Horrocks. Efficient Reasoning
with Range and Domain Constraints. In Volker Haarslev and Ralf Möller, editors,
Proceedings of the 2004 International Workshop on Description Logics (DL 2004),
volume 104 of CEUR Workshop Proceedings, Whistler, BC, Canada, June 6–8 2004.

[Tsarkov and Horrocks, 2005a] Dmitry Tsarkov and Ian Horrocks. Optimised Classifi-
cation for Taxonomic Knowledge Bases. In Ian Horrocks, Ulrike Sattler, and Frank
Wolter, editors, Proceedings of the 2005 International Workshop on Description Log-
ics (DL 2005), Edinburgh, Scotland, UK, July 26–28 2005.

[Tsarkov and Horrocks, 2005b] Dmitry Tsarkov and Ian Horrocks. Ordering Heuris-
tics for Description Logic Reasoning. In L. Pack Kaelbling and Alessandro Saffiotti,
editors, Proceedings of the 19th International Joint Conference on Artificial Intelli-
gence (IJCAI 2005), pages 609–614, Edinburgh, UK, July 30–August 5 2005. Morgan
Kaufmann Publishers.

[Tsarkov and Horrocks, 2006] Dmitry Tsarkov and Ian Horrocks. FaCT++ Description
Logic Reasoner: System Description. In Proceedings of the 3rd International Joint
Conference on Automated Reasoning (IJCAR 2006), volume 4130 of LNAI, pages
292–297, Seattle, WA, USA, August 17–20 2006. Springer.

[Tsarkov et al., 2007] Dmitry Tsarkov, Ian Horrocks, and Peter F. Patel-Schneider. Op-
timising Terminological Reasoning for Expressive Description Logics. Journal of Au-
tomated Reasoning, 39:277–316, 2007.

[Wu and Haarslev, 2008] Jiewen Wu and Volker Haarslev. Planning of Axiom Absorp-
tion. In Franz Baader, Carsten Lutz, and Boris Motik, editors, Proceedings of the
21st International Workshop on Description Logics (DL 2008), volume 353 of CEUR
Workshop Proceedings, Dresden, Germany, May 13–16 2008.

173


	I Foundations
	Introduction
	Description Logics
	Syntax and Semantics


	II Model Generation
	Difficulties
	Traditional Tableau Algorithms
	Or-Branching
	And-Branching
	Problems Due to Merging
	Nominals, Inverses, and Number Restrictions
	Promoting Blockable Individuals
	The Traditional Tableau Solution
	The NI-rule
	Annotated Equalities
	Nominals and Merging
	The NI-Rule and Unraveling


	Algorithm Overview
	Derivation Rules
	Calculus Overview
	Anywhere Pairwise Blocking
	Nominal Guard Concepts

	The Hypertableau Calculus for SROIQ
	Preprocessing
	Elimination of Role Inclusion Axioms
	Normalization
	Translation into DL-Clauses

	The Hypertableau Calculus for HT-Clauses

	Optimizations
	Caching Blocking Labels
	Single Blocking
	Subset Blocking
	The Number of Blockable Individuals
	The Number of Root Individuals

	Related Work
	Hypertableau vs. Absorption
	Relationship with Caching
	Relationship with First-Order Calculi


	III Classification and Retrieval
	Overview
	Difficulties
	Algorithm Summary

	Deducing a Quasi-Ordering
	Preliminaries
	Maximizing Partial Information
	Taxonomy Construction and Searching
	Example

	Extracting Subsumption Information From Models
	Identifying Non-Subsumptions
	Identifying Subsumptions

	Related Work

	IV Evaluation
	Empirical Results
	Reasoning Performance
	Implementing Anywhere Blocking
	Test Procedure
	Results

	Classification Performance
	Comparison with the Enhanced Traversal Method
	Overall Performance


	Conclusion
	Contributions
	Significance
	Future Work

	Reasoning Performance Data

	References

